March, 2025 Popular Article M. Rajashekhar e-mail: razshekarm@gmail.com *Citation:* Rajashekhar et al., 2025. Green Strategies for Insect Pest Management in Natural Dye Yielding Trees. Chronicle of Bioresource Management 9(1), 001-009. **Data Availability Statement:** Legal restrictions are imposed on the public sharing of raw data. However, authors have full right to transfer or share the data in raw form upon request subject to either meeting the conditions of the original consents and the original research study. Further, access of data needs to meet whether the user complies with the ethical and legal obligations as data controllers to allow for secondary use of the data outside of the original study. **Conflict of interests:** The authors have declared that no conflict of interest exists. # Keywords: Dye yielding trees, eco-friendly methods, insect pests, green strategies ## Article History Article ID: CBM5999 Received on 15th December 2024 Received in revised form on 20th January 2025 Accepted in final form on 02nd February 2025 # Green Strategies for Insect Pest Management in Natural Dye Yielding Trees M. Rajashekhar*, A. V. Ramanjaneyulu, S. Lakshmi Pooja, T. Chaitanya, S. Sirisha Deepthi, Ch. Rahul, U. J. Abhyudaya and N. Priyanka #### **Abstract** Natural dye-yielding plants, essential for sustainable and eco-friendly colorant production, are increasingly vulnerable to insect pest infestations that compromise not only dye quality but also crop yield. The reliance on conventional synthetic insecticides for pest management poses significant challenges, including environmental contamination, adverse effects on nontarget organisms, and the accumulation of toxic residues, which fundamentally conflict with the environmentally sustainable principles of crop management. Sustainable and eco-friendly pest management practices such as biological control, botanical insecticides, cultural and mechanical practices offer effective alternatives. Adoption of Integrated Pest Management (IPM) combining these eco-friendly approaches but excluding pesticides can not only help in environmental sustainability, but also safeguard the tree health, besides preserving biodiversity and ecological integrity. This transition is essential for advancing natural dye production and supporting environmentally conscious markets. The present paper discusses major pests affecting natural dye yielding trees and pro-environmental strategies for managing the same. ## 1. Introduction Synthetic dyes predominantly produced from petroleum-based compounds pose significant environmental and health hazards despite their widespread industrial usage. These dyes contribute to severe water pollution, as effluents from dye manufacturing and textile industries often contain toxic substances, including heavy metals and aromatic amines. Many synthetic dyes are non-biodegradable, persist in the environment and disrupt aquatic ecosystems. Furthermore, certain synthetic dyes have been linked to carcinogenicity, mutagenicity and also cause other adverse health effects in humans. Exposure to these dyes can cause skin irritation, respiratory issues, and long-term organ toxicity. The hazardous impact of synthetic dyes necessitates a critical reassessment of their use, especially in industries like textiles, cosmetics, and food coloring Author's Address 001 (Siva, 2007; Bhattacharya and Shah, 2000). Natural dyes, derived from eco-friendly sources such as trees, plants, minerals, insects and microorganisms offer a sustainable alternative to synthetic dyes. These colorants, traditionally employed for textiles, cosmetics, and food, are biodegradable, non-toxic, and free from harmful synthetic chemicals. Unlike synthetic dyes, natural dyes reduce environmental pollution, as they can be obtained from simple methods like water extraction and fermentation. India is a global leader in natural dye production, with traditional practices rooted in eco-friendly processes (Kumaresan et al., 2011). Rajasthan (henna, indigo), Tamil Nadu (indigo, turmeric), and Madhya Pradesh (arjuna bark, safflower) are the major dye producing states in India (Siva, 2007). These dyes are not only sustainable but also support biodiversity (Siva, 2007; Kumaresan et al., 2011) besides mitigating the adverse impacts associated with synthetic dyes. In India, natural dyes also hold cultural significance, being integral to traditional crafts like Kalamkari, Bandhani, and Ajrakh. They also support rural economies by providing livelihoods through the cultivation of dyeyielding plants and artisanal dyeing practices. The subtle differences between natural and synthetic dyes are furnished hereunder in Table 1. | Table 1: Comparison between natural and synthetic dyes | | | | | | | |--|--|--|--|--|--|--| | Parameters | Natural dyes | Synthetic dyes | | | | | | Source | Derived from natural materials like plants, minerals, insects and microorganisms | Manufactured chemically, often from petroleum derivatives | | | | | | Environmental impact | Eco-friendly, biodegradable, and non-toxic | Non-biodegradable, often toxic, and contributes to environmental pollution | | | | | | Color range | Narrow range and is limited to earthy and subtle tones | Wide range of vibrant and consistent colors | | | | | | Fixation | Requires mordants (e.g., alum, tannins) for color fixation | Easily fixed on fibers without additional treatments | | | | | | Cost | Typically more expensive due to labor-intensive extraction and processing | Cost-effective, with large-scale production | | | | | | Health impact | Safe for human use, non-allergic and non carcinogenic | Can contain harmful chemicals; some are carcinogenic or allergic | | | | | | Durability | Colors may fade over time with washing and sunlight | Durable with strong resistance to washing and UV exposure | | | | | # 2. Insect Pest Constraints in Natural Dye Yielding Plants and Eco-Friendly Management Despite multifarious benefits, natural dye-yielding trees face significant biotic stress due to insect pests, which can severely reduce their yield and quality. Certain insect pests directly target the dye-producing parts of plants, rendering them unsuitable for dye extraction and processing (Table 2). For instance, seed borers (*Caryedon serratus*) infest *Bixa orellina* seeds, reducing their viability and dye content. *Indigofera tinctoria* is affected by leafeating caterpillars (*Spodoptera litura*) and aphids (*Aphis craccivora*), which cause defoliation and nutrient loss, respectively. Such pest infestations not only lower the economic value of the affected plant parts but also disrupt the overall dye production chain, necessitating effective and sustainable pest management strategies (Siva, 2007). The reliance on synthetic insecticides for pest management has several adverse effects which include environmental pollution, toxicity to pollinators and natural enemies, and the development of insecticide resistance in insect pests. Further, residual toxicity pose health hazards to human beings, especially when the dyes are used in cosmetics and textiles. Hence, there is a great need to adopt eco-friendly strategies-for managing insect pests in natural dye-yielding trees (Dhaliwal et al., 2015). The details of major insect pests of dye yielding trees and Table 2: Major insect pests and their eco-friendly management in natural dye yielding tree species | Natural
dye-yielding
plant | Dye
yielding
part | Dye
colour | Name of the insect pest | Scientific name | Nature of damage | Symptoms of damage | Eco-friendly
management | |----------------------------------|-------------------------|--------------------------|-------------------------|---|--|---|--| | Butea
monosperma | Flower/
gum | Orange | Bark eating caterpillar | Indarbela
quadrinotata
(Figure 1) | Bore into
bark, feed
on tissues | Sawdust-like frass
at tree base, wilting,
and drying of
branches | Remove and destroy infested bark and use biopesticides like <i>Beauveria bassiana</i> @ 5 g litre ⁻¹ of water. | | | | | Leaf
defoliator | Spodoptera
litura
(Figure 12) | Defoliation of leaves | Irregular holes
on leaves, often
skeletonizing them.
Defoliation, leaving
only midribs in
severe infestations | Spray Bacillus thuringiensis @ 2 g litre ⁻¹ of water; introduce egg parasitoids like Trichogramma spp | | Terminalia
bellerika | Bark | Light
brown
colour | Tussock
caterpillar | Euproctis
fraterna
(Figure 2
and 13) | Defoliation | Skeletonized
leaves, reduced
photosynthesis | Release egg
parasitoids
(<i>Trichogramma</i>
spp.), spraying
with Azadirachtin
1500ppm @ 5 ml
litre ⁻¹ of water | | | | | Bark borer | Indarbela
tetraonis | Bore into
bark,
causing
drying of
branches | Bore holes in bark,
leading to damage to
vascular tissues
Drying of branches,
often accompanied
by frass accumulation
around the tree base. | Use neem-based
biopesticides, remove
and destroy affected
branches | | Punica | Rind | Yellow | Pomegranate | | Bore into | Premature fruit
drop, oozing of gum
from fruit, reduced
market value | Bagging of fruits, | | granatum | Flowers | and
brown | butterfly | isocrates
(Figure 3) | fruits, feed
on pulp | | spray neem-
based pesticides
Azadirachtin 1500
ppm @ 5 ml litre ⁻¹
of water, introduce
larval parasitoids
(<i>Bracon hebetor</i>) | | | | Red | | | | | | | | | | Aphid | Aphis
punicae | Suck
sap from
leaves,
reducing
plant vigor | Leaf curling and yellowing due to sap-sucking activity. Sticky honeydew secretion, which attracts sooty mold development. | Spray neem-based solutions, encourage natural predators like ladybird beetles (<i>Coccinellidae</i>) | | Eucalyptus sp. | Bark | Brown | Gall wasp | Leptocybe
invasa
(Figure 4) | Formation
of galls on
leaves and
twigs | Galls visible on
young shoots and
leaves, stunted
growth, reduced
productivity | Release parasitoids (Quadrastichus mendeli), prune and destroy affected twigs | Table 2: Continue... | Natural
dye-yielding
plant | Dye
yielding
part | Dye
colour | Name of
the insect
pest | Scientific name | Nature of damage | Symptoms of damage | Eco-friendly management | |----------------------------------|-------------------------|---------------|-------------------------------|--|--|---|--| | | | | Eucalyptus
leaf beetle | Chrysomela spp. | Chews leaves, reduces photosynthetic ability | Notched or
chewed leaf
edges, reducing
photosynthetic
area
Skeletonized
leaves, as beetles
feed on the soft
leaf tissue | Apply neem oil @ 5 ml litre ⁻¹ of water, handpick and destroy beetles | | Terminalia
arjuna | Bark | Brown | Arjuna
leaf
webber | Eutectona
machaeralis
(Figure 5) | Webbing of
leaves, feeding
on chlorophyll | Leaves appear
webbed,
yellowing, and
defoliation | Application of biopesticides (<i>Bacillus thuringiensis</i>) @ 2 g litre ⁻¹ of water, conserve natural predators like spiders and coccinellid beetles | | | | | Bark borer | Indarbela
tetraonis | Bore into bark,
causing drying
of branches | Boreholes in
bark, leading
to damage to
vascular tissues.
Drying of
branches, often
accompanied | Use neem-based
biopesticides, remove
and destroy affected
branches | | | | | | | | by frass
accumulation
around the tree
base | | | Caesalpinia
sappan | Heart
wood | Red | Pod borer | Helicoverpa
armigera
(Figure 6) | Feeds on pods
and seeds | Pods with
boreholes,
reduced seed
quality | Spray Azadirachtin
1500ppm @ 5 ml litre ⁻¹
of water and release
egg parasitoids like
<i>Trichogramma chilonis</i>
@ 50,000 per release. | | | | | Defoliator | Spodoptera
litura | Feeds on
leaves,
reducing
photosynthetic
ability | Irregular holes
on leaves, often
skeletonizing
them.
Defoliation,
leaving only
midribs in severe
infestations. | Spray <i>Bacillus</i> thuringiensis @ 2 g litre ⁻¹ of water | | Conocarpus
erectus | Bark | | Termites | Odontotermes spp. (Figure 7) | Feed on woody tissues | Hollowing of branches, weakening of the tree | Application of neembased insecticides, maintain field sanitation, avoid water stress | Table 2: Continue... | Natural
dye-
yielding
plant | Dye
yielding
part | Dye
colour | Name of
the insect
pest | Scientific name | Nature of damage | Symptoms of damage | Eco-friendly
management | |--------------------------------------|---|-------------------|-------------------------------|--|---|---|---| | | | | Stem
borer | Batocera
rufomaculata | Bores into stems, weakens the tree | Boreholes in stems and branches. Drying and dieback of branches due to internal feeding | Prune and destroy
infested stems, apply
neem oil @ 5 ml litre ⁻¹
of water | | Bixa Seed orellina | Seed | ed Red | Mealybug | Maconellicoccus
hirsutus
(Figure 8) | Suck sap
from leaves
and twigs | Stunted growth,
leaf curling,
honeydew
secretion leading
to sooty mold | Spray soap solutions or neem oil, introduce predators like ladybird beetles (<i>Cryptolaemus montrouzieri</i>) | | | | Aphids | Aphis gossypii | Sap-
sucking,
reduces
plant vigor | Yellowing and curling of leaves due to sapsucking activity. Honeydew secretion, which promotes the growth of sooty mold | Apply neem-based solutions Promote the conservation or mass release of natural predators such as <i>Cryptolaemus montrouzieri</i> (mealybug destroyer) and syrphid flies (hoverflies) | | | Indigofera
tinctoria | Plant/leaf
processed
to
fermented
cake form | Blue | Aphids | Aphis craccivora
(Figure 9) | Sap-
sucking | Yellowing and
curling of leaves,
reduced plant
vigor | Apply neem-based sprays. Encourage natural enemies like lacewings (<i>Chrysoperla</i> spp.) | | | | | Thrips | Thrips tabaci
(Figure 10) | Feeds on
leaves,
causing
silvery
streaks | Silvery streaks
on leaves due to
feeding damage | Use of blue sticky traps @ 50 ha ⁻¹ Spray <i>Beauveria</i> bassiana @ 5 g litre ⁻¹ of water | | Lawsonia
inermis | Leaves and stems | Reddish-
brown | Whitefly | Bemisia tabaci
(Figure 11) | Suck
plant sap,
vector viral
diseases | Yellowing,
stunted growth,
reduced
photosynthesis | Spray neem oil @ 5 ml litre ⁻¹ or <i>Lecanicillium lecanii</i> @ 5 g litre ⁻¹ of water, remove and destroy affected plants. | | | | | Thrips | Thrips tabaci
(Figure 10) | Feed on
young
leaves and
flowers | Silvery streaks
on leaves due to
feeding damage
Flower abortion,
leading to
reduced yield. | Use of blue sticky traps @ 50 ha ⁻¹
Spray <i>Beauveria</i>
bassiana @ 5 g litre ⁻¹
of water. | their sustainable solutions are listed in Table 2 (Prakash and Rao., 2018). # 3. Nature Friendly Strategies for insect pest Management in Natural Dye-**Yielding Trees** Integrated Pest Management (IPM) is a sustainable approach that combines various techniques to manage pest Figure 1: Indarbela quadrinotata Figure 2: Euproctis fraterna Figure 3: Deudorix isocrates Figure 4: Leptocybe invasa Figure 5: Eutectona machaeralis Figure 6: Helicoverpa armigera Figure 7: Odontotermes spp. Figure 8: Maconellicoccus hirsutus populations effectively while minimizing environmental harm. The following strategies can be employed to ensure the health of natural dye-yielding plants: Figure 9: Aphis craccivora Figure 10: Thrips tabaci Figure 11: Bemisia tabaci ### 3.1. Cultural practices Cultural methods focus on modifying the crop environment to make it less favorable for pests: • Diversity Planting: Encouraging biodiversity by growing a variety of plant species around dye plants An International E-magazine 007 Figure 12: *Butea monosperma-Spodoptera litura* damage Figure 13: Terminalia-Leaf webber damage creates a natural ecosystem that deters specific pests. The presence of companion plants can mask the host plant's attractiveness or provide habitats for beneficial organisms. • Crop Rotation: Rotating dye-producing plants with other crop species disrupts the life cycles of pests that rely on continuous availability of a single host. For example, alternating between *Indigofera tinctoria* and a non-host crop can help control soil-borne pests. #### 3.2. Monitoring Effective pest management begins with regular monitoring to detect infestations early: - Conduct frequent inspections to identify pests, diseases, or damage symptoms. - Use small devices or tools like yellow sticky traps, pheromone traps or light traps to monitor pest populations and assess intervention thresholds. Early detection helps minimize damage and ensures timely application of control methods. #### 3.3. Biological control Harnessing natural predators and parasitoids is a cornerstone of eco-friendly pest management: - Introduce beneficial insects, such as ladybirds (*Coccinellidae*) and lacewings (*Chrysopidae*), to prey on pests like aphids or whiteflies. - Utilize parasitoids such as *Trichogramma spp.* to target eggs of lepidopteran pests, preventing larval damage to plant parts. - Employ entomo-pathogenic fungi, such as *Beauveria bassiana*, to naturally infect and kill pests. #### 3. 4. Mechanical control Manual and physical methods can directly reduce pest populations: - Hand-Picking: Remove visible pests like caterpillars or beetles by hand to control infestations in smaller plantations. - Pruning and Sanitation: Cut off infested plant parts and dispose of them properly to prevent pest spread. This is effective especially for borers in trees like *Curcuma longa*. #### 3. 5. Soil and nutrient management Healthy plants are more resilient to pest attacks: - Improve soil quality by adding organic compost, biofertilizers and maintaining proper pH levels. - Use balanced fertilization to strengthen plant defenses, ensuring the production of high-quality dye compounds. - Avoid waterlogging or drought conditions, which can stress plants and make them more susceptible to pests. #### 3. 6. Education and awareness Engaging and educating stakeholders ensures the effective adoption of IPM strategies: - Conduct training programs for farmers and local communities on sustainable pest management techniques and their benefits. - Highlight the ecological and economic importance of natural dye-yielding plants to promote their cultivation and conservation. ## 4. Conclusion Implementing eco-friendly pest management strategies in natural dye-yielding tree species promotes a sustainable production by reducing use of chemical inputs, preserving beneficial organisms, and strengthening plant resilience to pest attacks. A holistic approach to pest management can be achieved by combining cultural, biological, and mechanical methods with community engagement. ## 5. References Bhattacharya, S., Shah, A.K., 2000. Natural dyes and their eco-friendly applications in textiles. Journal of Textile Engineering 46(1), 55–60. Dhaliwal, G. S., Jindal, V., Mohindru, B., 2015. Crop Pests and Their Management. Kalyani Publishers, New Delhi. Kumaresan, M., Palanisamy, P.N., Kumar, P.E., 2011. Application of eco-friendly natural dyes on cotton using metallic mordants. Indian Journal of Fibre& Textile Research 36(1), 39–44. Prakash, A., Rao, J., 2018. Integrated Pest Management: Strategies and Practices. Springer, Singapore. Siva, R., 2007. Status of natural dyes and dye-yielding plants in India. Current Science 92(7), 916–925. © 2025 PP House