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Sustainable production of horticultural crops in the tropics is often severely constrained 
by the fragility of soils, being prone to several forms of degradation. Microbes being 
an integral component of any soil eco-system provide life to the soil. They render 
soil richness in terms of making available slow-release nutrients, continuous breaking 
down of complex macro-molecules and natural products into simpler one to enrich 
beneficial substances, maintaining good physicochemical properties of the soil and 
most essentially providing support to the plants in terms of growth enhancement. 
This review treats the role of microorganisms in improving nutrition of major (N, P 
and K) as well as micronutrients in horticultural crops, promoting plant growth and 
yield. It focuses on the mechanisms of various groups of microorganisms involved 
in harnessing atmospheric N2, mobilizing insoluble source of phosphorus, potassium 
and micro-nutrients and promoting plant growth through improved nutrition and 
growth hormone production. Further improvement in the efficiency of phosphate 
mobilizing micro-organisms through genetic engineering has also been discussed. 
Thus microbial association enable a better use of sparingly soluble nutrients either 
inherited from soil or applied through anthropogenic sources, thereby increasing the 
efficiency of added fertilizers.    

*E-mail: ashis78@rediffmail.com

1.  Introduction

Ancient agriculture started with shifting cultivation, which 
restored soil fertility. This system was later replaced by bush 
fallow system and organic farming, which continued till 1960s 
in India. During the past four decades we have witnessed the 
doubling of the human population and a concurrent doubling 
of food production. Increase in crop production has been made 
possible through the use of commercial man-made fertilizer 
and pesticides. The tremendous increase of N and P fertiliza-
tion, in addition to the introduction of highly productive and 
intensive cultivation system has allowed these developments 
to occur at relatively low costs. However, due to unintended 
introduction of degrading process like extensive use of agro-
chemicals and irrigation mediated salinization, the intrinsic 
capacity of the natural resource (soil) has diminished in devel-
oping as well as developed countries. Indiscriminate addition 
of agro-chemicals and their inefficient use by crop plants as 
well have led to unsustainability of a farming enterprise and 
also created environmental problems such as deterioration of 
soil quality, surface water, and ground-water as well as air 
pollution, reduced biodiversity and suppressed eco-system 
function. These have led to the development of “sustainable 

agriculture” concept in mid 80s. It envisages a system ap-
proach and places primary emphasis on maximizing not only 
the yield but also agro-eco-system stability. Thus, it represents 
an integration of traditional techniques with modern advances, 
which are recognized as appropriate. Further, high fertilizer 
prices brought about by the energy crisis, cost of inputs and 
transportation, import restrictions and inconveniences, the 
need for conservation of foreign exchange necessitate serious 
attention to be given to a technology in agriculture/horticulture 
having both chemical and bio-components for proper manage-
ment of soil nutrients. Thus, the rational supplementation of 
agro-chemical with beneficial microbes will be a healthy and 
promising approach for making the production system more 
sustainable, eco-friendly and profitable. It has been realized 
that microorganisms are a vital component of sustainable agro-
production system (Venkateshwarlu et al., 2008). They have 
intimate relation with soil and are the first colonizer of our 
planet. They have been assisting in soil formation process and 
augmenting soil fertility through various activities and even all 
nutrient transformations are mediated by soil microbes. Some 
of them have the ability to harness atmospheric nitrogen and 
make it available to crops either directly or indirectly. Even, 
solubilization of phosphorus is also accomplished by many 
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heterotrophic soil microbes. Besides major nutrients, available 
micronutrient status of soil is also directly or indirectly regu-
lated by microorganisms. To harness maximum benefit from 
these microbes, the need of artificial inoculation of efficient 
microbes was felt and accordingly bio-fertilizer technology was 
invoked by using these microbes as source of inoculum.

2.  Nitrogen Nutrition

Atmospheric nitrogen (N) composes approximately 80% of 
the air we breathe. Although abundant and ubiquitous in the 
air, N is the most limiting nutrient to plant growth, because the 
atmospheric N2 is not available for plant uptake. Some bacteria 
are capable of N2 fixation from the atmospheric N pool. These 
bacteria form various associations with plants: many free-living 
N2-fixing bacteria occur in soil, some have adapted to form 
symbiosis; others have intimate endophytic association with 
plants, and others live in close association in the plant root zone 
(rhizosphere) without forming intimate endophytic symbiosis. 
The amount of nitrogen fixed by these different systems is 
considerable, although variation resulting from environmental 
conditions or different plant microbes combination is vast. The 
close proximity of these microorganisms to their host plant 
allows efficient plant use of fixed nitrogen and minimizes 
volatilization, leaching and denitrification losses. 

Azotobacter is one of the important members of the free-living 
diazotrophic club due to its broad spectrum utility for different 
crops. Its colonies appear flat, soft, milky and mucoid. The cells 
are polymorphic and young ones have peritrichous flagella. 
Azotobacter chroococcum is the most prevalent species found 
but other species reported include A. agilis, A. vinelandi, A. 
beijerinckii, A. insiginis, A. macrocytogenes and A. paspali. 
As it is sensitive bacterium, its establishment in soil is very 
poor. But the rhizosphere of the crop plants is found to be 
more congenial than non-rhizosphere soils. In rhizosphere 
root exudates, amino acids, sugars, vitamins, organic acids 
together with the decaying portion of root system serve as an 
energy source for its survival and growth. Furthermore, its 
proliferation in rhizosphere is influenced by the ecological 
and agro-climatic factors like fertility levels and soil type, 
moisture, temperature, pH, organic carbon content of soil, 
plant type, nature of plant exudates and interaction with other 
microbes. It was observed that Azotobacter population in the 
peach rhizosphere increased with fertilizer application upto 
180 days and then declined (Godara et al., 1995). Vesicular 
arbuscular mycorrhizal (VAM) fungi and cellulytic microbes 
encourage Azotobacter population (Godara et al., 1995) but 
Cephalosporium sp. may inhibit its growth (Jha et al., 1999). 
The potential of Azotobacter chroococcum as nitrogen fixer 
in fruit plant have been exploited. Azotobacter chroococcum 
inoculation (20 l ha-1) in banana stimulated all phenological 

variables (plant height, number of leaves and shoots and 
pseudo-stem diameter). Bacterial inoculation improved fruit 
development and increased the fruit: rachis ratio particularly 
when nitrogenous fertilizer was applied between 80% and 
100% of recommended dose of fertilizer (RDF). So the bacte-
rial inoculation could compensate for 20% of the N-fertilizer 
without changing the yield obtained from 100% N-fertilizer 
application (Dibut-Alvarez et al., 1996). Similarly, inoculation 
of Azotobacter chroococcum in ‘Anna’ apple along with farm 
yard manure and suboptimal dose of nitrogenous fertilizer in-
creased leaf nitrogen content to a considerable extent at three 
growth stages and also raised fruit nitrate content significantly 
(EL-Boray et al., 2006). Poor establishment of Azotobacter 
in rhizosphere makes them poor competitors and that leads to 
erratic response. Thus, immediate need is to select or breed a 
strain with better efficiency and competitive ability.

The group of microorganisms, which fixes atmospheric N2 
through formation of loose association with plant root, is 
known as associative symbiotic N2-fixer. Azospirillum are 
important member of associative N2-fixer and are found widely 
distributed in loose association with roots of most of the agri-
culturally/horticulturally important crop plants. They have no 
preferences for crop plants or weeds, or for annual or perennial 
plants, and can be successfully applied to plants that have no 
previous history of Azospirillum in their roots. It appears that 
Azospirillum is a general root colonizer and not a plant specific 
bacterium. Earlier, Bashan and Holguin (1997), and Bashan et 
al. (2004) have provided detailed information with regard to 
plant species and association of Azospiriullum. Soil inoculation 
with pure cell suspensions of Azospirillum brasilense markedly 
increased plant dry weight and nitrogen uptake in pomegran-
ate, ber (Ziziphus mauritiana), mulberry and other fruit crops 
(Rao and Dass, 1989; Das et al., 1994; Hazarika and Ansari, 
2007). Application of the bacterium Azospirillum brasilense 
(3 g plant-1 as a root dip at transplanting) to sweet orange cv. 
Mosambi plants substituted for at least ¼ of the nitrogenous 
fertilizer requirement (Singh and Sharma, 1993). Tiwary et al. 
(1999) also reported that Azospirillum inoculation in banana 
along with 100% recommended N-fertilizer increased leaf ni-
trogen and chlorophyll content to a considerable extent. Their 
contribution to yield of various vegetable crops like onion, brin-
jal and potato, etc. has also been demonstrated to be equivalent 
to that of 15-20 kg N ha-1. However, magnitude of response 
varied with location, season, bacterial strain and crop variety, 
etc. (Thilakavathy and Ramaswamy, 1999; Mahendran and 
Kumar, 1998; Nanthakumar and Veeraragavathatham, 1999). 
In fact, N2-fixation was naturally the first major mechanism of 
action suggested for the enhancement of plant growth using 
Azospirillum. Incorporation of atmospheric nitrogen into the 
host plant by Azospirillum is evaluated mainly by the acetylene 

Maity et al., 2012

490



© 2012 PP House

reduction assay (Van BerKum and Bohlool, 1980). Evidences 
are there that N2-fixation contributes to the nitrogen balance of 
plants is based on the common observation of an increase in the 
nitrogenase activity within inoculated roots (Berg et al., 1980; 
Cohen et al., 1980; Kapulnik et al., 1981; Hess, 1982; Hegazi 
et al., 1983; Okon et al., 1983; Yahalom et al., 1984). This well 
documented enzymatic activity is of sufficient magnitude to 
account for the increase in total nitrogen yield of inoculated 
plants when the entire fixed N is incorporated into the plants 
(Sarig et al., 1984; Mertens and Hess, 1984). Further studies 
pinpointed the positive bacterial effects on plants influencing 
morphological and physiological processes in the inoculated 
roots that could lead to an enhancement of water and mineral 
uptake (Okon and Kapulnik, 1986). However, it was agreed that 
the beneficial Azospirillum effects on plants was dependent on 
good root colonization. Hence, root colonization is important 
as the first step not only in infection by soil-borne pathogens 
but also in beneficial associations with microorganisms. The 
Azospirillum-root interaction is a two step process comprised 
of adsorption, mediated by bacterial proteins, and anchoring 
involving bacterial polysaccharides (Michiels et al., 1991). 
To attach and colonize plant root surfaces, Azospirillum spp. 
must first rely in a process that depends on active motility and 
chemotaxis toward root exudates. Attempt was also made to 
study the distribution of Azospirillum in the root with differ-
ent techniques. Using the gfp-protein to tag bacteria, Liu et al. 
(2003) confirmed previous findings about colonizing patterns. 
In general, the bacteria are established mainly on the root 
surface but some strains of A. lipoferum and A. brasilense 
are capable of colonizing the root interior in the apoplast 
and intercellular spaces. This ability could mean a lower 
vulnerability to harsh conditions imposed by the soil and/or 
the environment, which in turn could imply a more efficient 
promotion of plant growth (Sturz and Nowak, 2000). However, 
rhizobacteria established inside roots in intimate association 
with plants are considered endophytes. These microorganisms 
live outside the symplast and do not produce nodules, but 
can produce signal compounds that stimulate plant growth, 
enhance plant disease resistance and improve mobilization of 
soil nutrients. Arbuscular mycorrhizae (AM) have also been 
reported to enhance N nutrition of inoculated plant. In acid 
soils, AM fungi may be important for the uptake of ammonium 
(NH4

+), which is less mobile than nitrate (NO3
-) and where 

diffusion may limit its uptake rate. Although nitrate is much 
more mobile than ammonium (uptake is regulated through 
mass flow), AM fungi may be important in nitrate uptake in 
Mediterranean and semi-desert eco-systems. Because of their 
small size, AM fungal hyphae are better able than plant roots 
to penetrate decomposing organic material and therefore better 
competitors for recently mineralized N (Hodge, 2003). The 
enhancement of nitrogen uptake by pomegranate through use 

of AM fungi was evident in several studies (Aseri et al, 2008; 
Rupnawar and Navale, 2000ab) demonstrating its usefulness in 
promoting N nutrition in plants. Moreover, vesicular arbuscular 
mycorrhizas (VAM) fungi also influence nitrogen metabolism 
within the plant through enhancing enzyme activity involved in 
the process. It has been observed that mycorrhizal inoculation 
in jhar-beri (Ziziphus nummularia) increased the activities of 
glutamine synthetase, nitrate reductase and glutamine dehydro-
genase thereby increased the concentration of soluble protein 
in leaves and roots (Mathur and Vyas, 1995). 

3.  Phosphorus Nutrition

Phosphorus is an important element and plays a key role in 
the nutrition of plant as it promotes development of deeper 
roots (Gaur, 1990). Being a constituent of ATP, it is involved 
in diverse process such as cell division, energy transduction 
through photosynthesis and biological oxidations and nutri-
ent uptake (Awasthi et al., 2011). There are two components 
of phosphorus (P) in soil, organic and inorganic phosphate. 
And a large proportion of it is present in insoluble forms and 
therefore, not available for plant nutrition. Inorganic P occurs 
in soil, mostly in insoluble minerals complexes, some of them 
appearing after the application of chemical fertilizers. How-
ever, these precipitated forms can not be absorbed by plants. 
Organic matter on the other hand, is an important reservoir of 
immobilized P that accounts for 20-80% of soil P (Richardson, 
1994). Phosphorus can be released from organic compounds 
in soil by three groups of enzymes: non-specific phosphatase, 
which performs dephosphorylation of phosphor-ester or 
phosphor-anhydride bonds in organic matter; phytases, which 
specifically cause P release from phytic acid; and phospho-
natases and C-P lyases enzymes that perform C-P cleavage in 
organophosphates. The main activity apparently corresponds 
to the work of acid phosphatases and phytases because of the 
predominant presence of their substrates in soils. Availability 
of organic phosphate compounds for plant nutrition could be 
a limitation in some soils resulting from precipitation with soil 
particle ions. Therefore, the capability of enzymes to perform 
the desired function in the rhizosphere is a crucial aspect for 
their effectiveness in plant nutrition. Several acid phosphatase 
gene from gram-negative bacteria have been isolated and 
characterized (Rossolini et al., 1998). The acpA gene isolated 
from Francisella tularensis expresses an acid phosphatase with 
optimum action at pH 6.0 with a wide range of substrate speci-
ficity (Reilly et al., 1996). Also genes encoding non-specific 
acid phosphatase class A (PhoC) and class B (NapA) isolated 
from Morganella morganii are very promising since the bio-
physical and functional properties of the coded enzymes were 
extensively studied (Thaller et al., 1994, 1995). Heterologous 
expression of these genes in agriculturally important bacterial 
strains would be the next step in programs of improving organic 
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phosphate mineralization in plant growth promoting bacteria 
(PGPB). The napA phosphatase gene from the soil bacterium 
Morganella morganii was transferred to Burkholderia cepacia 
IS-16, a strain used as bio-fertilizer, using the broad host range 
vector pRK293 (Fraga et al., 2001). However, an increase in 
extracellular phosphatase activity of the recombinant strain 
was reported. Insertion of transferred genes into the bacterial 
chromosome is advantageous for stability and ecological safety. 
A plasmid for the stable chromosomal insertion of the phoC 
phosphatase gene from Morganella morganii was constructed 
based on the delivery system developed by de Lorenzo et al. 
(1990). Further, this plasmid was transferred to Azospirillum 
and preliminary results indicated increased phosphatase activ-
ity of the strain.

Similarly, thermally stable phytase gene (phy) from Bacillus 
sp. DS 11 (Kim et al., 1998) and from Bacillus subtilis VTT 
E-68013 (Kerovuo et al., 1998) has been cloned. Acid phos-
phatase/phytase gene from Escherichia coli (appA and appA2 
genes) have also been isolated and characterized (Rodriguez et 
al., 1999; Golovan et al., 2000). The bi-functionality of these 
enzymes makes them attractive for solubilization of organic 
P in soil. However, neutral phytase have also great potential 
for genetic improvement of PGPB.

Even many fungi, bacteria, actinomycetes and cyanobacteria 
are potential solubilizers of bound phosphorus in soil (Singh 
and Kapoor, 1992; Gupta et al., 1998; Whipps, 2001; Hu, 2005; 
Zaidi and Khan, 2006; Chakraborty et al., 2006; Siddiqui, 2006; 
Awasthi et al., 2011). Phosphate solubilizing microorganisms 
are found in all soils but their number greatly varies with soil 
climate and its history (Gupta et al., 1986). Though, they are 
more common in the rhizosphere soil of different crops than 
that in non-rhizosphere soil. Even, few of them were also re-
ported from the phyllosphere of crop plants. Interestingly, their 
presence was also noted in the soils of rock phosphate deposit 
area and marine environment. The most efficient phosphate 
dissolving bacterial isolates belong to the genera Bacillus and 
Pseudomonas, though species of Brevibacterium, Corynebac-
terium, Micrococcus, Sarcina and Achromobacter are found 
to be active in solubilizing the insoluble phosphate. Among 
fungi, the most efficient phosphate solubilizers belong to the 
genera Aspergillus and Penicillium, but species belonging to 
the genera Cephalosporium and Alternaria are also known to 
solubilize insoluble phosphate. However, fungi are reported 
to be more efficient P-solubilizer than bacteria, actinomycetes 
and cyanobacteria (Thomas et al., 1985). Microorganisms 
involved in P solubilization as well as better scavenging of 
soluble P can enhance plant growth by increasing the efficiency 
of biological nitrogen fixation, enhancing the availability of 
other trace elements by production of growth promoting sub-
stances (Gyaneshwar et al., 2002). Application of phosphorite 

along with phosphate solubilizing bacteria (PSB) improved 
P-uptake by plants and yield indicating that PSB are able 
to solubilize phosphate and to mobilize phosphorus in crop 
plants (Rogers and Walfram, 1993). Phosphate solubilizing 
bacteria [Pseudomonas fluorescent Ps. (RM3M) and Bacillus 
megaterium BM (NRC 131)] inoculation in maghrabi banana 
(Musa sp.) with mineral phosphorus improved the efficiency 
of P fertilizer and would curtail the required P rate to a tune 
of 25% in plants. Improvement in vegetative growth and 
fruit quality, have also been reported by Attia et al. (2009). 
Inoculation of PSB (Microphos) along with keradix (rooting 
powder) found to promote fresh root development to a larger 
extent in stem cuttings of grape (Wange and Ranawade, 1997, 
1998). The PSB-plant inoculation resulted in 10-15% increase 
in crop yield in 10 out of 37 experiments. Such experiments 
also demonstrated an increase in P-uptake by plants (Tandon, 
1987). But, no correlation could be established between the 
pH and the degree of solubilization. Though, solubilization of 
insoluble phosphate could be achieved under acidic conditions 
(Gaind and Gaur, 1990). Factors like nutrition, aeration and 
temperature have also great influence in phosphate solubiliza-
tion (Illemer and Schinner, 1992). Narsian and Patel (1997) 
reported that high salt (sodium chloride) concentration badly 
affected P solubilization activity of Aspergillus aculeatus. 
Earlier, Gyaneshwar et al. (1998) cloned two genes responsible 
for conferring mineral phosphate solubilizing ability in E. coli 
from Synechocystis PCC 6803, a unicellular cyanobacterium. 
The transformants were found to solubilize rock phosphate also 
and the property was found to be plasmid associated. Recently, 
native isolates of PSB (Pseudomonas cholorraphis, Bacillus 
cereus and P. fluorescens) from walnut rhizosphere found to 
improve plant height, shoot and root dry weight and P&N 
uptake of walnut seedlings (Xuan Yu et al., 2011).

In fact, the improvement of P-nutrition in plants has been the 
most recognized beneficial effect of mycorrhiza (Bianciotto 
and Bonfante, 2002). The increased uptake of phosphorus 
following mycorrhizal inoculation has been reported in straw-
berry, citrus, grape, litchi, guava, banana, apple, papaya and 
pomegranate (Hrselova et al., 1990; Rizzardi, 1990; Antunes 
and Cardoso, 1991; Liang, 1995; Kon, 1995; Yamashita et 
al., 1998; Chacon and Cuenca, 1998; Hazarika and Ansari, 
2007; Aseri et al., 2008). The mechanism that is generally ac-
cepted for such mycorrhizal role consists of a wider physical 
exploration of the soil by mycorrhizal fungi than by roots. 
Besides, hyphae that extend beyond the root depletion zone, 
various subsidiary mechanisms have been proposed to explain 
P-uptake by mycorrhizal fungi, such as the kinetics of P-uptake 
into hyphae differ from those of roots either through a higher 
affinity (lower Km) or a lower threshold concentration at which 
influx equals efflux (Cmin); root and hyphae explore microsites 
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differently, especially small patches of organic matter (St 
John et al., 1983; Joner and Jakobsen, 1995); plant root and 
mycorrhizal hyphae affect chemical changes and P solubility 
in the rhizosphere differently. AM (Glomus mosseae+Glomus 
fasciculatum+Gigaspora margarita) inoculation in papaya 
with mineral phosphorus improved the efficiency of P-fertilizer 
and would reduce the required P-dose to plant by about 25% 
(Padma and Kandasamy, 1990). In corporation of easily soluble 
P-fertilizer or rock phosphate might feedback differently on 
mycorrhizal functioning. Application of soluble phosphate 
reduced mycorrhizal functioning in citrus rhizosphere. In 
contrast, addition of sparingly soluble P sources such as rock 
phosphate could even increase mycorrhizal colonization by 
52% compared with the soluble phosphate application (Tang 
and He, 1991; Vanlanwe et al., 2000; Alloush and Clark, 2001). 
The magnitude of the effect seems to be partly crop species-
specific, interacting with the extent to which rhizosphere 
changes affect rock phosphate dissolution.

4.  Potassium Nutrition

Like N and P, potassium (K) is the third major essential nutrient 
required for plant growth and development. It plays an essential 
role for enzyme activation, protein synthesis and photosynthe-
sis. Potassium in soil is present in water-soluble, exchangeable, 
non-exchangeable and structural or mineral forms. Potassium 
from water-soluble and exchangeable pools is directly available 
for plant uptake. At low levels of exchangeable-K in certain soil 
types, non-exchangeable-K can also contribute significantly 
to the plant uptake (Memon et al., 1988; Sharpley, 1989). 
Non-exchangeable-K consists predominantly of interlayer K 
of non-expanded clay minerals such as illite and lattice K in K-
bearing minerals such as K-feldspars. According to Buchholz 
and Brown (1993) more than 98% of potassium in soil exists 
in the form of silicate minerals (microcline, muscovite, ortho-
clase biotite, feldspars, etc.). The main source of K for plant 
growing under natural condition comes from the weathering of 
K-minerals and organic K-sources such as compost and plant 
residues. However, it is recognized that the weathering process 
can be further mediated by organisms and their metabolites. 
Respiration by plant roots and microbial degradation of organic 
matter can elevate carbonic acid concentration in the soils and 
ground water, leading to an increase in the weathering rates 
of minerals (Chapelle et al., 1987; Keller and Wood, 1993). 
In addition to carbonic acid, direct contact between bacteria 
and mineral may be important in mineral alteration reaction, 
as microbial surface can complex with metal ions (Ferris et 
al., 1998; Daughney et al., 1998). It was observed that K was 
released from mica to water soluble and exchangeable pool of 
potassium due to inoculation of mica with Bacillus mucilagi-
nosus in two alfisols under sudan grass cultivation (Basak and 
Biswas, 2008). Similarly inoculation of Bacillus mucilaginosus 

along with K-bearing minerals was found to increase soil avail-
able K, K-uptake and promote growth of brinjal and groundnut 
(Han and Lee, 2005; Sugumaran and Janarthanam, 2007). Badr 
(2006) reported that inoculation of Bacillus cereus (silicate 
dissolving bacteria) into composting-mass appeared to enhance 
the percent of available K in the mature compost compared 
to its counterpart without inoculation. The conjunctive use 
of feldspar-charged-compost and Bacillus cereus markedly 
increased total K-uptake by tomato and had greater K-recovery 
than potassium sulphate application in sandy soil. 

A strain of thermophilic fungus Aspergillus fumigatus was 
found to promote potassium release from K-bearing miner-
als by means of at least three likely routes, one through the 
complexation of soluble organic ligands, another appealing 
to the immobile polymers such as the insoluble components 
of secretion, and the third related to the mechanical forces 
in association with the direct physical contact between cells 
and mineral particles (Bin et al., 2008). Microorganisms at-
tached to mineral surfaces can also create micro-environments 
where concentration of ligand, acidity and redox activity can 
be substantially elevated compared to the bulk solution, thus 
effecting mineral exchange reaction (Hiebert and Bennett, 
1992; Barker and Banfield, 1996, 1998; Rogers et al., 1998; 
Barker et al., 1998). A number of ligands, not only oxalate but 
also pyruvate, citrate, succinate, malate, gluconate, lactate and 
fumarate have been detected in soils and on weathered rocks 
colonized by bacteria and fungi (Fox and Comeford, 1991; 
Palmer et al., 1991; Baziramakenga et al., 1995; Krzyszowska 
et al., 1996). 

Arbuscular mycorrhizal fungi have also been reported to im-
prove K-nutrition in plant. Concentrations of K were higher 
in mycorrhizal than non-mycorrhizal plants (Bressan et al., 
2001; Liu et al., 2002). Increased K concentration can be a 
consequence of increased P availability on plant growth and 
the effects of mycorrhizas on P and K are laborious to disen-
tangle. Thus, bio-intervention on K-bearing minerals could be 
an alternative and viable technology to solubilize insoluble K 
into soluble form and could be used effectively as a source of 
K-fertilizer for sustaining fruit crop production and maintain-
ing soil potassium. 

5.  Micro-nutrient Nutrition

Micronutrient deficiencies, especially those of zinc (Zn) and 
iron (Fe), are of major concern in developing countries caus-
ing especially serious health problems in human especially in 
infants, children and women. Zn and Fe deficiency in humans 
is a consequence of the limited bio-availability of Zn and Fe 
in tropical soils and hence in plants. Problems may have been 
exacerbated as a consequence of increased fertilizer use. In-
creased crop production through application of macronutrient 
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fertilizers can dilute Zn and Fe concentrations in plants. This 
is the well-known dilution effect, increased macronutrients 
availability improve plant growth and thereby spreads other 
available nutrients throughout plant tissue. There is no dearth 
of literature pertaining to AM fungi indicating enhanced mi-
cronutrient uptake particularly Zn and to some extent Fe and 
Cu in various fruit crops. AM inoculations have been found to 
increase leaf Zn, Fe and Cu content in citrus, peach and Ottawa 
apple over non-inoculated plants (Viyanak and Bagyaraj, 1990; 
Singh and Sharma, 1993; Venter and Thomas, 1993; Godara et 
al., 1996). Though, the effect was more pronounced with dual 
inoculation of VAM and Azotobacter. In general, AM fungi are 
involved in the interaction between P and Zn. The application of 
P fertilizer found to reduce mycorrhizal functioning and led to 
a lower uptake of Zn. A similar response was also demonstrated 
by Lambert et al. (1979). Mehravaran et al. (2000) provided 
evidence that different species of AM fungi differ for the uptake 
effectiveness of P and Zn, because uptake of both elements in 
mycorrhizal plants was not correlated. A possible explanation 
is that AM fungi differently express P and Zn transporters or 
differently down-regulate the P and Zn transporters of plants. 
Treeby (1992) also reported the role of VAM inoculation in 
improving Fe-nutrition in citrus under acidic soil condition. 
However, in many environments the amount of soluble iron 
is too low to sustain the microorganisms. This low solubility 
and hence bioavailability of iron is overcome by some organ-
isms through the production and excretion of iron-chelating 
compounds, termed siderophores. These compounds bind with 
iron to form a siderophore-iron complex which is then taken 
up by the cell and iron is later liberated internally (Gram et al., 
2002). In particular, the so-called fluorescent pseudomonads 
Pseudomonas aeruginosa, P. fluorescens, and P. putida pro-
duce a water-soluble yellow-green fluorescent (under UV light) 
pigment called pyoverdine (Meldrum, 1999). This pigment 
is responsible for the characteristic fluorescence of the cell 
and has also been identified as an iron-chelating siderophore 
(Meyer and Abdallah, 1978; Neilands, 1983; Fernandez et 
al., 1988). It has been observed that pyoverdine production is 
stimulated by conditions of iron limitation, and its production 
decreases with increasing iron availability (Meyer and Abdal-
lah, 1978). Duel inoculation with Pseudomonas fluorescens and 
VAM increased ferrous iron and leaf chlorophyll contents in 
the most lime induced cholorosis susceptible grape rootstock 
in calcareous soil and higher mycorrhizal colonization also 
enhanced Mn and Cu concentration in leaf fresh matter (Ba-
varesco and Fogher, 1992, 1996ab).
Organic acids released in the surrounding medium by a range 
of ericoid mycorrhizal fungi can solubilize insoluble inorganic 
metal compounds, and suggests that isolates from polluted 
and unpolluted environments differently influence Zn mobil-
ity. In the terrestrial environment, solubilization of insoluble 

metal compounds is important for the release of trace metals 
as well as associated anionic nutrients e.g. phosphate into bio-
geochemical cycles (Gadd, 1993, 1999; Morley et al., 1996). 
This appears to depend mainly on the excretion of various 
metabolites, including organic acids, and protons (Franz et al., 
1991; Burgstaller and Schinner, 1993; Sayer et al., 1995; Gadd, 
1999). The Oidiodendron maius isolates produced fumarate, 
malate and citrate that solubilized the insoluble inorganic Zn 
compounds. The amount of organic acids released by the fungi 
into the medium could be correlated, at least for a limited num-
ber of O. maius fungal isolates, with the solubilization activity 
shown in Petri dishes. Organic acids perform a diverse range 
of functions in the soil, and most of these processes appear to 
be beneficial to resident organisms (Jones, 1998). Depending 
on the number and dissociation properties of their carboxylic 
groups, they can complex metal cations to different degrees, 
and displace anions from the soil matrix. Citrate and malate in 
particular are strong natural chelators of trivalent cations such 
as Al3+ and Fe3+, and are involved in the scavenging of metal 
ions from insoluble compounds in the soil. Particularly citrate 
has been shown to be the most important Al3+ complex former 
in soil solution from podzolised forest soils (Van Hees et al., 
2001). These organic acids are released in the soil by bacteria, 
fungi and plant roots (Jones, 1998). Their production in fungi 
has been reported to increase at growth limiting concentrations 
of soluble metal ions such as Mn2+, Fe2+ and Zn2+ (Gadd, 1999). 
The nature and amount of organic acids excreted by fungi can 
be strongly influenced by the pH and the buffering capacity 
of the medium, the carbon source and the nitrogen-phosphate 
balance (Kubicek et al., 1988). Also, Burgstaller and Schinner 
(1993) reported that the production of citric acid by Penicil-
lium simplicissimum was induced after adsorption of ZnO on 
the mycelium, probably because of a change in the membrane 
H+-ATPase activity.

6.  Plant Growth Promotion

Over the past two decades, bacteria from the plant’s rhizo-
sphere have received considerable attention with respect to 
plant growth promotion. However, rhizosphere bacteria are 
collectively called plant growth promoting rhizobacteria 
(PGPR). These bacteria vary in their mechanism of plant 
growth promotion but generally influence growth via phosphate 
solubilization, nutrient uptake enhancement or producing plant 
growth hormone. Even, inoculation of Azospirillum along with 
nitrogenous fertilizers found to enhance growth parameters 
like height, girth of stem and leaf area and also increased yield 
in banana and strawberry (Jeeva et al., 1988; Wange, 1996). 
It has also been demonstrated that Azospirillum inoculation 
along with recommended dose of fertilizer increased yield 
significantly in pumpkin, potato and onion (Mahendran and 
Kumar, 1998; Karuthamani et al., 1995; Thilakavathy and 
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Ramaswamy, 1999; Nanthakumar and Veeraragavathatham, 
1999). Also Mahmoud and Mahmoud (1999) showed that the 
treatment of peach seedling with Azotobacter chroococcum 
and Bacillus megatarium led to increase in the plant height, 
stem diameter, leaf number, plant dry weight, leaf area, leaf 
micronutrient and chlorophyll content. Inoculation of mango 
seedlings with Glomus fasciculatum and Azotobacter chroococ-
cum strain 1 had increased seedling height, diameter, leaf area, 
and total root length under solarization and black polyethylene 
mulching (Sharma et al., 2011).  In pomegranate Trichoderma 
harzianum was used which could promote the rooting in its 
stem cuttings (Satish Kumar et al., 2001). There are reports 
that few microorganisms have been used for acclimatization 
and growth promotion in micro-propagated fruit plants. Ear-
lier, Ruiz (1997) showed that inoculation of micropropagated 
banana plantlet with mycorrhizal strains (Glomus fasciculatum, 
Acaulospora escrobiculata and Glomus mexico) and treatment 
with phosphorine bio-fertilizer resulted in increased dry weight 
of plant and reduced hardening period. Similarly, Mathur and 
Vyas (1999) reported that the in-vitro multiplied VAM strain 
established efficient symbiosis with in-vitro raised plantlets of 
Ziziphus mauritiana. Use of such VAM strain found to improve 
the biomass production, nutrient uptake and acclimatization 
of in-vitro produced Ziziphus mauritiana plantlets in the field. 
An artificial symbiosis between Azotobacter vinelandi and 
strawberry callus was successfully established through using 
biolistic gum (Preininger et al., 1996, 1997). A tripartite culture 
system (wherein micro-propagated strawberry plantlets, after 
root induction grown on cellulose plug were placed in contact 
with the primary mycorrhizae in growth chambers enriched 
with 5000 ppm CO2 and fed with minimal medium) was also 
successful in establishing symbiosis with micro-propagated 
strawberry plantlets. It was observed that the VAM symbiosis 
reduced osmotic potential of plantlets. This response might 
be a useful pre-adaptation for plantlet during transfer to the 
acclimatization stage (Elmeskaoui et al., 1995). The studies on 
role of mycorrhizal inoculation on post acclimatization growth 
of micro-propagated fruit plant indicated that the growth and 
development of Annona cherimola plant profited from myc-
orrhizal establishment. Most of the Glomus sp. markedly in-
creased shoot, root biomass and leaf area of micro-propagated 
plant. The greatest effect of VAM fungi on plant growth were 
observed when they were introduced after the acclimatization 
period (Azcon-Aguilar et al., 1994). So, micro-propagated 
Annona cherimola plants are more dependent on mycorrhiza 
formation for optimum growth than plant derived from seeds. 
Similarly, VAM inoculation significantly increased the fruit 
yield in strawberry. It was demonstrated that the combination of 
strawberry cultivar and endophyte also play role in maximizing 
benefit obtained from mycorrhizal colonization (Chavez and 
Ferrera Cerrato, 1990). Further, under green-house condition 

VAM fungi inoculation was found to promote a good growth 
in orange and peach seedlings (Chang and Chien, 1990; Xue 
and Luo, 1992). It was reported that cytokinin activity in 
roots and leaves was associated with differences in seedling 
total dry weight and VAM colonization. Moreover, seedling 
leaf tissue had greater cytokinin activity than root tissue. 
Interestingly, VAM fungi colonization in root of fruit plant is 
reported to have beneficial effect on plant growth even under 
stress condition. Under high air temperature stress condition 
the photosynthesis and transpiration rates of VAM inoculated 
Satsuma mandarin trees were higher to those of non-VAM ones. 
Though, VAM-trees had three times more photo-assimilates 
per tree than uninfected ones as the VAM infected trees had 
leaf area three times larger than the uninfected trees which 
grew more vigorously. 

7.  Conclusion 

The role of various root associated microorganisms in plant 
nutrition and growth as well as make use of their potential 
beneficial features as bio-fertilizers in horticultural crop 
production has been presented with few examples of bacteria 
and fungi, which may bear a great promise as bio-fertilizers. 
In order to harness the potential benefits derived from these 
organisms, more information is urgently needed on the interac-
tions among plants and rhizosphere associated microorganisms. 
Various fungi and bacteria provide a battery of extracellular 
enzymes, which could be utilized for improving crop yields and 
curtailing costs of inorganic fertilizers. Thus, multiple organ-
isms’ inoculation may be of great value, if various organisms 
with different proven or suspected benefits to the crop plant 
can be integrated for sustainable production and eco-friendly 
environment. 
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