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The present study was conducted at College of Post Graduate Studies in Agricultural Sciences, Meghalaya, India in the 
rabi season (November–April) of 2020–21 to study genetic variability, character association and identify high yielding Al 

tolerant lentil RILs genotypes suitable for Al toxicity prone acidic soils of Meghalaya. The genotypes were screened through 
phenotypic evaluation in the field, character association, root morphology studies and determination of root Al content. The 
pooled variance analysis over two locations revealed highly significant genotype×location interaction for the traits under study 
except days to maturity, number of primary branches plant-1 and number of seeds pod-1, whereas variance due to genotypes 
was highly significant for all the 10 characters except number of seeds pod-1. Among all the characters, high Hbs

2 coupled with 
high GA percentage were observed in number of primary branches plant-1, plant height and 100 seed weight. Highly positive 
and highly significant correlation was observed between seed yield plant-1 with number of pods plant-1 (0.84***), biological yield 
plant-1 (0.79***), number of seeds pod-1 (0.47***), number of primary branches plant-1 (0.31***) and harvest index (0.31***). From 
the root morphology analysis, it was observed that high yielding tolerant genotypes constituted of well-established root systems 
under acidic soil conditions. Based on mean performance of seed yield plant-1, various attributing traits and root morphology 
studies the best performing genotypes were LRIL-37, LRIL-22, LRIL-96, LRIL-97, LRIL-144, LRIL-92 and LRIL-109. 
The identified genotypes may be used for further evaluation in multiple environments for final release and also for use in the 
hybridisation programme.
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1.   INTRODUCTION

Lentil (Lens culinaris ssp. culinaris), an important cool 
season legume, is popular both as food and feed 

attributing to its protein-rich (20.6%–31.4%) seeds and 
straw (Urbano et al., 2007, Tullu et al., 2011). Genus 
Lens belongs to the family Fabaceae (Leguminosae) and 
placed in subfamily Faboideae; tribe Fabeae (Soltis et al., 
2011) displays the unique property of biological nitrogen 
fixation, thus improving soil fertility (Suryapani et al., 
2013, Singh et al., 2019). Lentil is a rich source of protein, 
vitamins, micronutrients, minerals, soluble and insoluble 
dietary fibres and contain minimum levels of antinutritional 
factors (Karakoy et al.,  2012, Benayad and Aboussaleh, 
2021). Lentil is the third most important pulse crop in India 
after chickpea and arahar. The global production of lentil 
stands at 6.5 million tonnes in 2020, with Canada being the 
largest producer contributing a share of 45% while India was 
the second largest producer of lentil contributing 18% of 
the world total (Anonymous, 2022). Although, cultivated 
in 1.32 mha nationally, being highly sensitive to soil acidity, 
lentil cultivation is mostly restricted to regions with higher 
soil pH (5.0) (Ryan, 2018). There is immense potential 
to increase the area under lentil cultivation in Meghalaya 
attributing to its favourable climatic conditions (Ansari et 
al., 2015). However, majority of the soils in Meghalaya 
(2.24 mha) are acidic in nature (Majumdar et al., 2022). 
Acid soils, characterized by a pH of 5.5 or lower, constitutes 
approximately 50% of the arable land of the world (Sade et 
al., 2016). In acidic soils, when pH generally drops below 
5, aluminium (Al) the third most abundant metal of earth 
crust, solubilizes into phytotoxic forms and causes root 
growth inhibition resulting in reduced vigour and yield in 
plants (Singh et al., 2016). Thus, Al stress becomes of the 
prime limitations of crop production in acidic soils (Zheng, 
2010). In fact, Al toxicity has been reported in 67% of the 
world’s acidic soils (Lin et al., 2012). 

Legumes such as lentil contribute significantly to the human 
diet, in addition to being an important and cheap source of 
protein for the poor (Semba et al., 2021). Thus, there arises 
an increased need to identify new niches for lentil production 
for increasing food security while parallelly screening and 
finding new sources for Al stress tolerance in lentil suitable 
to be grown in Al-rich acidic soils of Meghalaya in order 
to bring more area under the production of lentil. For 
designing an effective selection breeding programme, the 
knowledge of variability estimates is essential to the plant 
breeders (Meena et al., 2017, Sharma et al., 2022). The 
utilization of any species in a breeding programme depends 
upon its genetic diversity and adaptability in different 
environments (Rai and Jat, 2022). Yield being a complex 
trait, depends on several yield attributing traits. Knowledge 

about genetic parameters and correlation between different 
yield attributing characters is essential while formulating 
an efficient breeding program (Singh and Srivastava, 2013, 
Kumar and Solanki, 2014, Jeberson et al., 2015).  Studies 
on root morphology is important as the root system plays a 
crucial role in nutrient and water uptake and by increasing 
root surface area and volume gets exposed to a larger amount 
of soil available nutrients (Tang et al., 2003, Hodge, 2004, 
Hodge et al., 2009, Aski et al., 2022). Therefore, the current 
study is designed for screening of a population of lentil RILs 
developed from parents contrasting for Al tolerance with 
the objective to screen genetic variability, identify the high 
yielding aluminium tolerant RILs suitable to be grown in 
acidic soils and ascertain the agronomical traits useful for 
selecting desirable lines based on association studies. (Note: 
Please Check Spacing)

2.   MATERIALS AND METHODS 

The experiment was conducted using 150 F6 RILs of 
lentil, parents viz. BM-4 (Al sensitive) and L-4602 

(Al tolerant) and two checks viz. DPL-62 and PDL-1 
(Table 1). The field evaluation was executed during the 
rabi (November–April) season of 2020–21 at two locations; 
in the lowland rice-fallow experimental field of College of 
Post Graduate Studies in Agricultural Sciences, Meghalaya, 
India (longitude of 91°54'40'', latitude of 25°40'55'' and 959 
m above msl) and Agro-forestry experimental plot of ICAR 
for NEHR (25º40'47'', latitude of 91º54'39'' longitude and 
961 m above msl) .The soil properties of the respective 
experimental sites are presented in Supplementary Table 1. 
The genotypes were grown in Randomized Block Design 
(RBD) with three replications following the recommended 
package of practices in both the locations. Data was recorded 
on days to 50% flowering (D50F), days to maturity (DM), 
plant height (PH) (cm), number of primary branches plant-1 
(NPB), number of pods plant-1 (PPP), number of seeds 
pod-1 (SPP), seed yield plant-1 (SYP) (g), 100 seed weight 
(100SW) (g), biological yield plant-1 (BYP) (g) and harvest 
index (HI) (%). 

For studying root morphology, the plants were uprooted 
at podding stage without damaging the roots, washed in 
running water and observed under Root Scanner (Biovis 
P200) for recording the root morphology parameters. Oven 
dried samples of roots were ground into powder form using 
a grinder and digested using Diacid mixture (3:1 Nitric acid: 
perchloric acid). Al content in the samples was quantified 
using Atomic Absorption Spectrophotometer (Model-Elico 
SL-194).

Pooled data recorded for different agronomic traits were 
used for estimating ANOVA, PCV, GCV, Genetic 
Advance, Heritability, and Correlation using MS Excel, 
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Table 1: List of lentil genotypes used in the present study

Sl. 
No.

Name of genotype Source Sl. 
No.

Name of 
genotype

Source Sl. No. Name of 
genotype

Source

1. BARI MASOOR 
4 (BM-4)

Bangladesh Agricultural 
Research Institute 
(BARI)

53. L RIL-49 IARI 105. L RIL-101 IARI

2. L-4602  Indian Agricultural 
Research Institute 
(L-830×Precoz)

54. L RIL-50 IARI 106. L RIL-102 IARI

3. DPL-62 Indian  Agr icu l tura l 
Research Institute (IARI)

55. L RIL-51 IARI 107. L RIL-103 IARI

4. PDL-1 IARI 56. L RIL-52 IARI 108. L RIL-104 IARI

5. L RIL-1 IARI 57. L RIL-53 IARI 109. L RIL-105 IARI

6. L RIL-2 IARI 58. L RIL-54 IARI 110. L RIL-106 IARI

7. L RIL-3 IARI 59. L RIL-55 IARI 111. L RIL-107 IARI

8. L RIL-4 IARI 60. L RIL-56 IARI 112. L RIL-108 IARI

9. L RIL-5 IARI 61. L RIL-57 IARI 113. L RIL-109 IARI

10. L RIL-6 IARI 62. L RIL-58 IARI 114. L RIL-110 IARI

11. L RIL-7 IARI 63. L RIL-59 IARI 115. L RIL-111 IARI

12. L RIL-8 IARI 64. L RIL-60 IARI 116. L RIL-112 IARI

13. L RIL-9 IARI 65. L RIL-61 IARI 117. L RIL-113 IARI

14. L RIL-10 IARI 66. L RIL-62 IARI 118. L RIL-114 IARI

15. L RIL-11 IARI 67. L RIL-63 IARI 119. L RIL-115 IARI

16. L RIL-12 IARI 68. L RIL-64 IARI 120. L RIL-116 IARI

17. L RIL-13 IARI 69. L RIL-65 IARI 121. L RIL-117 IARI

18. L RIL-14 IARI 70. L RIL-66 IARI 122. L RIL-118 IARI

19. L RIL-15 IARI 71. L RIL-67 IARI 123. L RIL-119 IARI

20. L RIL-16 IARI 72. L RIL-68 IARI 124. L RIL-120 IARI

21. L RIL-17 IARI 73. L RIL-69 IARI 125. L RIL-121 IARI

22. L RIL-18 IARI 74. L RIL-70 IARI 126. L RIL-122 IARI

23. L RIL-19 IARI 75. L RIL-71 IARI 127. L RIL-123 IARI

24. L RIL-20 IARI 76. L RIL-72 IARI 128. L RIL-124 IARI

25. L RIL-21 IARI 77. L RIL-73 IARI 129. L RIL-125 IARI

26. L RIL-22 IARI 78. L- RIL-74 IARI 130. L RIL-126 IARI

27. L RIL-23 IARI 79. L- RIL-75 IARI 131. L RIL-127 IARI

28. L RIL-24 IARI 80. L- RIL-76 IARI 132. L RIL-128 IARI

29. L RIL-25 IARI 81. L- RIL-77 IARI 133. L RIL-129 IARI

30. L RIL-26 IARI 82. L RIL-78 IARI 134. L RIL-130 IARI

31. L RIL-27 IARI 83. L RIL-79 IARI 135. L RIL-131 IARI

32. L RIL-28 IARI 84. L RIL-80 IARI 136. L RIL-132 IARI

33. L RIL-29 IARI 85. L RIL-81 IARI 137. L RIL-133 IARI

34. L RIL-30 IARI 86. L RIL-82 IARI 138. L RIL-134 IARI

35. L RIL-31 IARI 87. L RIL-83 IARI 139. L RIL-135 IARI
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Sl. No. Name of genotype Source Sl. No. Name of genotype Source Sl. No. Name of genotype Source

36. L RIL-32 IARI 88. L RIL-84 IARI 140. L RIL-136 IARI

37. L RIL-33 IARI 89. L RIL-85 IARI 141. L RIL-137 IARI

38. L RIL-34 IARI 90. L RIL-86 IARI 142. L RIL-138 IARI

39. L RIL-35 IARI 91. L RIL-87 IARI 143. L RIL-139 IARI

40. L RIL-36 IARI 92. L RIL-88 IARI 144. L RIL-140 IARI

41. L RIL-37 IARI 93. L RIL-89 IARI 145. L RIL-141 IARI

42. L RIL-38 IARI 94. L RIL-90 IARI 146. L RIL-142 IARI

43. L RIL-39 IARI 95. L RIL-91 IARI 147. L RIL-143 IARI

44. L RIL-40 IARI 96. L RIL-92 IARI 148. L RIL-144 IARI

45. L RIL-41 IARI 97. L RIL-93 IARI 149. L RIL-145 IARI

46. L RIL-42 IARI 98. L RIL- 94 IARI 150. L RIL-146 IARI

47. L RIL-43 IARI 99. L RIL- 95 IARI 151. L RIL-147 IARI

48. L RIL-44 IARI 100. L RIL- 96 IARI 152. L RIL-148 IARI

49. L RIL-45 IARI 101. L RIL- 97 IARI 153. L RIL-149 IARI

50. L RIL-46 IARI 102. L RIL- 98 IARI 154. L RIL-150 IARI

51. L RIL-47 IARI 103. L RIL- 99 IARI

52. L RIL-48 IARI 104. L RIL- 100 IARI

following Singh and Chaudhary (1985) and GENES 
Software.

3.  RESULTS AND DISCUSSION

The pooled analysis of variance for the two locations (Table 
2) revealed highly significant variance due to genotypes for 
all the characters except for SPP, indicating presence of 
sufficient variability in the genotypes selected for this study. 
Genotype×location interaction was highly significant for 

the traits SYP, 100 SW, PPP, D50F, PH, BYP and HI 
suggesting significant interaction of the genotypes with the 
specific environment of the two locations for these traits. 
Similar findings have been reported by Dugassa et al. (2014), 
Tyagi and Khan (2010) and Crippa et al. (2009) in lentil.
3.1.  Mean performance

 The mean data for the various parameters under study are 
presented in supplementary Table 3. Days to 50% flowering 
in the genotypes under study ranged from 49.25 days to 

Table 2: Pooled analysis of variance for ten agronomic characters in 154 genotypes of lentil grown in two locations

Source of variation

Replications Block-1 Treatments Environments T×E

Degrees of freedom 4 153 1 153

Days to 50% flowering 53.22 221.38** 14260.71** 24.04**

Days to maturity 48.4 126.24** 9527.15** 0.94

Plant height 11.17 92.80** 6602.06** 3.07**

Number of primary branches plant-1 2.45 6.79** 1631.24** 0.12

Number of pods plant-1 1886.54 3332.4** 50297.80** 942.48**

Number of seeds pod-1 0.032 0.067 0.034 0.006

100 seed weight 5.34 1.63** 0.82 0.14**

Seed yield plant-1 0.84 6.67** 404.99** 1.76**

Biological yield plant-1 1.024 14.2** 1277.10** 3.66**

Harvest index 0.003 0.164** 0.004 0.12**

**=(p=0.01) level of significance; *=(p=0.05) level of significance
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75.75 days. Days to maturity in the genotypes under study 
ranged from 108.75 days to 126.75 days. Some of the early 
maturing genotypes were LRIL-100 (108.75 days) followed 
by LRIL-120 (108.75 days), LRIL-138 (108.75 days), 
LRIL-140 (108.75 days), LRIL-36 (109 days), LRIL-119 
(109.25 days) etc., which were at par with the lowest value 
and with the two parents viz. L-4602 (109.5) and BM-4 
(111.17). Plant height in the studied genotypes ranged 
from 14.45 cm to 38.08 cm with an average plant height of 
26.39 cm. The shortest plants were observed in LRIL-44 
(14.45 cm) followed by LRIL-8 (18.45 cm), LRIL-90 (18.7 
cm), LRIL-52 (18.83 cm) and LRIL-55 (19.43 cm). The 
number of primary branches ranged from 2.22–10.02, with 
the average primary branches of 5.14. There was significant 
variability for number of pods plant-1 among the genotypes 
which ranged from 29.02–145.45 with an average of 72.66 
plant-1. 100 seed weight ranged from 2.17–4.96 g with 
an average 100 seed weight of 3.00 g. Seed yield plant-1 

among the genotypes ranged from 1.27–6.8 g plant-1 with 

an average of 3.46 g plant-1. Biological yield plant-1 ranged 
from 3.23–11.12 g plant-1 with an overall mean of 6.47 g 
plant-1, while harvest index ranged from 0.31-0.74, with 
an average value of 0.53. Based on mean performance of 
seed yield plant-1 and various attributing traits in the best 
performing genotypes LRIL-37, LRIL-22, LRIL-68, 
LRIL-96, LRIL-97, LRIL-144, LRIL-18, LRIL-63, 
LRIL-92and LRIL-109 (Table 3).

3.2.  Estimates of genetic parameters of variability

Genotypic coefficient of variation estimate (Table 4) was 
highest (>20%) for PPP (27.46 %), followed by SYP (26.15 
%), BYP (20.52%) and NPB (20.51%), while moderate 
GCV (10-20%) was observed for 100 SW (16.59%), HI 
(15.60 %), and PH (14.65%).PCV was high for the traits 
namely, HI (41.17%), PPP (39.89%), SYP (36.20), BYP 
(28.66%), and NPB (22.72%) indicating the pronounced 
influence of environmental effects and interactions in the 
expression of these characters. 

Table 3: mean performance of seed yield and various attributing traits in the best performing genotypes

Genotype D50F DM PH NPB PPP SPP 100SW SYP BYP HI

1. L RIL-37 67 113.5 22.55 5.32 109.99 1.67 3.77 6.8 9.58 0.72

2. L RIL-22 69 121.75 27.75 5.52 145.44 1.97 2.5 5.95 8.45 0.71

3. L RIL-68 53.25 110.25 24.05 6.65 104.72 2 3.37 5.89 8.4 0.69

4. L RIL-96 62.5 111.75 24.33 5.48 72.71 2 4.8 5.71 8.36 0.69

5. L RIL-97 67.25 124.25 31.29 4.98 114.57 1.97 2.99 5.38 9.91 0.55

6. L RIL-144 73.5 123.75 26.17 6.15 110.57 1.87 2.96 5.38 9.02 0.59

7. L RIL-18 66.25 114.25 26.35 5.6 84.88 2 4.07 5.23 11.12 0.47

8. L RIL-63 61 113.25 26.78 10.02 85.05 1.6 3.61 5.16 9.94 0.51

9. L RIL-92 70.5 114.25 29.3 6.15 113.22 2 2.42 5.11 8.57 0.56

10. L RIL-109 59.75 123.25 23.58 4.98 120.05 1.87 2.75 5.08 7.48 0.68

Table 4: Estimates of means, range, genotypic coefficient of variation (GCV%), phenotypic coefficient of variation (PCV%), 
heritability (H2bs %) and genetic advance as percentage of mean for 154 genotypes of lentil grown in two locations

S l . 
No.

Characters Mean Range GCV 
(%)

PCV 
(%)

Heritability
(H2bs) (%)

Genetic advance as 
percent of mean (GA%)

1. Days to 50% flowering 62.54 49.25-75.75 9.17 10.56 75.29 16.39

2. Days to maturity 115.74 108.75-126.75 3.94 4.16 90.18 7.72

3. Plant height 26.39 14.45-38.08 14.65 15.72 86.82 28.12

4. No. of primary branches plant-1 5.14 2.22-10.02 20.51 22.72 81.52 38.15

5. No. of pods plant-1 72.66 29.02-145.44 27.46 39.86 47.46 38.98

6. No.  of seeds pod-1 1.87 1.6-2.00 5.39 6.94 60.39 8.63

7. 100 seed weight 3.00 2.17-4.96 16.59 20.24 67.20 28.03

8. Seed yield plant-1 3.46 1.27-6.80 26.15 36.20 52.20 38.93

9. Biological yield plant-1 6.46 2.10-11.12 20.52 28.66 51.21 30.24

10. Harvest index 0.54 0.31-0.74 15.60 41.17 14.36 12.18
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Heritability determines the extent of phenotypic variation 
attributed to the genotype or genetic causes. In the current 
experiment, the highest estimate of heritability (>60%) 
was recorded for DM (90.18%), followed by PH (86.82%), 
NPB (81.52%), D50F (75.29%), 100 SW (67.20%) and 
SPP (60.39%). Moderate (30-60%) estimates of heritability 
were observed for SYP (52.20%), BYP (51.22%) and PPP 
(47.46%). Highest genetic advance as percentage of mean 
(>20%) was recorded for PPP (38.98%) followed by SYP 
(38.93%), NPB (38.15%), BYP (30.24%), PH (28.12%) and 
100 SW (28.03) while GA% was moderate for D50F and 
HI. Low genetic advance was observed for DM and SPP. 
High heritability with high genetic advance indicates the 
presence of additive gene effects (Panse and Sukhatme, 
1957). High heritability coupled with high genetic advance 
were observed in NPB, PH and 100 SW for which additive 
genes were probably more influential, while non-additive 
genes were probably responsible in the inheritance of the 
other characters. Chakrabarty and Haque (2000) reported 
high heritability and high genetic advance for grain yield 
plant-1, 100-grain weight and number of pods plant-1 while 
high heritability values coupled with high genetic advance 
as percent mean were observed for number of pods plant-1 
and biomass yield by Dugassa et al. (2014). Moderate to 
high estimates of heritability, GCV, PCV and genetic gain 
were reported for seed yield plant-1, number of primary 
branches plant-1and number of secondary branches plant-1 
(Singh and Srivastava, 2013).
3.3.  Correlation among yield and attributing traits

Higher magnitude of genotypic correlation facilitates 
in selection of genetically controlled characters that are 
associated and provides a better chance for improving 
seed yield than that expected on the basis of phenotypic 
association alone (Robinson et al., 1955). A highly positive 
and highly significant correlation (Figure 1) was observed 
between SYP and PPP (0.84***), followed by BYP (0.79***), 
SPP (0.47***) and NPB (0.31***), HI (0.31***) and a positively 
significant correlation with 100 SW (0.20*) (Figure 1), from 
which it can be suggested that SYP can be successfully 
improved by selecting for more number of PPP, more 
NPB, higher BYP and higher 100 SW. Chauhan and Singh 
(2001) reported positively significant and strong association 
between seed yield and total biological yield plant-1 while 
Singh et al. (2009) observed that pods plant-1, seeds pod-1, 
biological yield and harvest index had significantly positive 
correlation with seed yield. 
3.3.1. Correlation analysis for 10 agronomic characters in 154 
lentil genotypes grown in two locations

Among the yield attributing characters, positive and 
significant correlation was observed between PPP and BYP 
(0.68***), number of SPP, HI and NPB. D50F had positive 
and highly significant correlation with DM (0.43***) and PH 
(0.27***) which suggests that earliness or late maturity was 

Figure 1: Correlation analysis for 10 agronomic characters 
in 154 lentil genotypes grown in two locations

dependent on the flowering duration while, short plants 
matured early and taller plants had late maturity. Most of 
the traits having significant correlation with BYP revealed 
that increased expression of these traits will lead to increase 
in BYP and vice-versa. The results are in agreement with 
Tullu et al. (2001) and Kumar (2020). 
A highly significant but negative correlation observed 
between 100 SW and PPP (-0.32***) may be due to 
differential partitioning of photosynthates which results in 
seeds with higher seed weight but lesser number of pods 
and vice-versa as bold seeded genotypes had relatively lesser 
number of pods when compared to small seeded genotypes 
as evident in this study. 
3.4.  Root morphology studies

The root system and its architecture are an important aspect 
while screening the genotypes for Al toxicity tolerance since 
a well-established root system in the tolerant genotypes 
proliferates better roots in the acidic medium thus absorbing 
more water and nutrients from the soil which in turn leads 
to better growth and development of above ground plant 
parts and ultimately results in higher yields. 
The analysis of variance for root morphology traits of 154 
lentil genotypes grown in natural acidic field (Table 5) 
suggested that highly significant differences existed due 
to genotypes for all the five root morphology traits under 
study indicating the presence of sufficient variability in the 
154 genotypes evaluated in this study. The mean trait value 
(Supplementary table 4) for root tips ranged from 21.5 to 
174, average root diameter in the genotypes under study 
ranged from 0.88 cm2 to 2.98 cm2 while the total root length 
ranged from 270.52–3324 cm. Total root surface area in 
the genotypes under study ranged from 386.01–2924.61 
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Table 5: Analysis of variance (ANOVA) for five root traits 
in 154 genotypes of lentil evaluated in acidic fields

Source of Variation

Genotypes Replications Error

DF 153 2 306

Root tips (RT) 2594.09** 984.98 102.35

Average  root 
diameter (ARD)

0.35** 0.08 0.11

Total root area 
(TRA)

873483.33** 3381.64 32253.6

Total root 
length (TRL)

459840.26** 483593.7 18372.72

Total root 
volume (TRV)

36071460.28** 131287.6 1010062

cm2  and the estimate of total root volume of the genotypes 
studied in the present experiment ranged from 638.39–
25646.08 cm3. It was observed that most of the genotypes 
like LRIL-37, LRIL-22, LRIL-96, LRIL-97, LRIL-144, 
LRIL-92, LRIL-109 etc (Table 6) exhibiting higher yields 
under acidic field conditions constituted of well-established 
root systems with proliferating root traits while most of the 
low yielders like LRIL-2, LRIL-40, LRIL-65, LRIL-24, 
LRIL-141 etc. had relatively lesser root growth and poor 
root systems (Figure 2). Tang et al. (2003) reported that the 
tolerant genotype produced more than five times the root 
length in the acidic subsurface soil compared to sensitive 
variety and suggests that the difference in root proliferation 
in the subsurface soil and hence in utilizing nutrient and 
water reserves in the subsurface soil layer has resulted in 
the genotypic variation in growth and yield of wheat grown 
with subsurface soil acidity. Bushamuka and Zobel (1998) 
observed that the tap roots, basal roots and lateral roots 
of maize and soybean genotypes grown in a stratified acid 
Al-toxic soil medium were comparable to the control in the 
tolerant genotypes while the sensitive genotypes exhibited 

Table 6: Mean estimates of various root morphology traits 
of high yielding RILs

Genotypes Root 
tips 

(RT)

Average 
root 

diameter 
(ARD)

Total 
root 
area 

(TRA)

Total 
root 

length 
(TRL)

Total 
root 

volume 
(TRV)

L RIL-37 87.5 1.94 1400.68 1124.57 4227.37

L RIL-22 108 1.6 2500.61 1368.29 5073.19

L RIL-96 89.5 2.16 1558.46 1029.51 5539.11

L RIL-97 47.5 1.32 1255.9 962.2 3032.24

L RIL-144 98.5 2.3 1656.47 1175.7 5777.11

L RIL-92 68.5 1.78 1257.81 1224.62 3120.11

L RIL-109 119.5 1.48 1690.73 1501.2 6094.14
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Figure 3: Aluminium content (mg g-1) in lentil RILs evaluated under acidic field conditions of Meghalaya

Figure 2: Root morphology of lentil genotypes collected 
from field evaluation observed under root scanner, tolerant 
genotypes (A) LRIL-92 and (B) LRIL-144 vs sensitive 
genotypes (C) LRIL-2 and (D) LRIL-40

no root growth in the Al toxic bottom layer.
3.5.  Estimation of Al content

The aluminium content of the genotypes evaluated under 
acidic field conditions ranged from 0.606 mg g-1 to 1.382 
mg g-1 (Figure 3).
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Figure 4: Regression of seed yield plant-1 vs root Al content 
in lentil RILs

A negative trend (R2=49.42 %) was observed from regression 
analysis between root Al content and yield (Figure 4) 
obtained under field conditions which suggests that in most 
of the cases higher yields were obtained in Al stress tolerant 
genotypes having lower levels of Al content in their roots, 
while genotypes containing higher levels of Al in their roots 
exhibited lower yield under acidic field conditions. 

sponsoring part of our research in terms of materials and 
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