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The study was conducted from June, 2020 to January, 2021 in two villages namely; Chinna Tandrapadu and Mandoddi of 
Ieeja Mandal, Gadwal district, Telangana, India to assess the lodged crop using the sentinel-I data with two polarizations 

and two cross polarisations backscatter values. The two major methods were direct Seeding and transplanting. In direct-seeded 
rice, seeds were directly sown in the field, the plants did not have deep root penetration and were susceptible to crop lodging, a 
major problem during the flowering and grain-filling stages, leading to crop loss and damage during the monsoon season. The 
area under the crop was estimated using remote sensing, which provided real-time, reliable, and quick information. Microwave 
data with its longer wavelength (1 mm to 100 mm) could penetrate through clouds and other atmospheric particles, and hence 
its usage in monitoring rice ecosystems gained importance. In this study, Sentinel-1A images were utilized for analysis. The 
multi-temporal C-band dual-polarization VV, VH, and their combinations VV VH-1 and VH VV-1 backscattering values were 
studied throughout the crop growth period. The backscatter values obtained from the crop during the growth stages were 
analyzed using the paired t-test. It revealed that the flowering, dough, and maturity stages were the periods when the lodged 
crop could be discriminated from the unlodged crop at the VV and VH polarizations. The band cross-combinations VV VH-1 

and VH VV-1 were not able to discriminate the lodged crop.
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1.   INTRODUCT ION

Lodging is displacement of the stems from their upright 
position, either due to stem collapse or the failure of the 
root-soil anchoring system (Pinthus, 1974, Huang et al., 
2016). It is a major issue in cereal crops (wheat, rice, barley, 
maize, and oats) significantly reducing yields (Islam et 
al., 2007; Shah et al., 2017). The major factors that cause 
lodging are strong winds, heavy rainfall, and improper 
farming practices such as heavy use of fertilizers and high 
planting densities, which exacerbate lodging (Quang Duy et 
al., 2004, Yang et al., 2015). According to studies by Berry 
and Spink (2012) and Berry et al. (2013), yield losses in 
oilseed rape and cereals in the UK can amount to as much 
as 75% if lodging takes place close to the grain-filling stage. 
The economic losses resulting from oilseed and wheat 
in years with significant lodging are expected to be £64 
million and £105 million, respectively. Beyond just lowering 
yield, lodging also results in deterioration of grain quality, 
structural damage to plants, and physiological disruptions 
(Li et al., 2022; Zhang et al., 2023). For this reason, it is 
crucial for stakeholders including farmers, agronomists, 
insurers, and legislators to evaluate the danger of lodging 
and its consequences (Holzman et al., 2018; McCarty et al., 
2021).	

Over the past few decades, the use of sensors and Remote 
sensing (rs) technologies has grown significantly and their 
application in agriculture monitoring is increasing steadily 
(McNairn et al., 2009; Guo et al., 2021). RS technologies are 
used in many areas of agriculture in crop acreage estimation, 
drought assessment and crop condition assessment, the also 
provide high spatial data and temporal data that provides 
near realtime estimation (Guan et al., 2022; Zhang et al., 
2020). RS is also becoming a crucial tool for assessing crop 
lodging, which can help improve crop production and loss 
estimates (Chauhan et al., 2018; Rabieyan et al., 2023).

There are many studies that are addressing the crop lodging 
issues by many agronomists and plant physiologists in 
development of models to simulate seasonal lodging 
risk (Baker et al., 2014; Sposaro et al., 2010 ; Canisius 
et al., 2018; Zhao et al., 2020) and also to understand 
the morphological traits associated with lodging (Kong 
et al., 2013). Traditionally, assessments of lodging have 
been made using field-based techniques, such as visual 
inspections, in which the severity and angle of lodging 
are used to establish a score (Wang et al., 2024; Biswal et 
al., 2022). Nevertheless, small-scale coverage, high labour 
costs, difficult accessibility, and bad weather sometimes 
pose limitations to these conventional methods (Ajadi et 
al., 2020; Zhang et al., 2024).

Changing climatology and ecologies have reflected its 
responses on vegetation by alterations to its biophysical 

and biochemical properties, either immediately or gradually 
(Hong et al., 2007; McNairn et al., 2009). Numerous 
studies have established and documented the use of RS 
technology to monitor such changes (Montes et al., 2020; 
Liu et al., 2023; Jun et al., 2018).). These methods can also 
be extended to extract information related to crop lodging. 
Rs technologies uses two key components: (i) understanding 
specific plant traits that either make crops prone to lodging 
or help in assessing its occurrence, and (ii) selecting 
appropriate modelling techniques. This information aids in 
predicting lodging risk and mapping its severity.RS-based 
lodging assessments have utilized data from passive sensors 
to detect lodging (e.g., lodged vs. non-lodged crops) (Liu 
et al., 2014). The major constraint, however is availability 
of cloud free data throughout the crop growing season is 
not possible the use of microwave data in the assessment 
of the crop lodging proven to be best and provides accurate 
information (Canisius et al., 2018; Cable et al., 2014). 
The current study utilises the sentinel-I data with two 
polarizations and two cross polarisations backscatter values 
to assess the lodged crop.

2.  MATERIALS AND METHODS

2.1.  Study area 

The study was conducted from June, 2020-January, 2021 
in Gadwal district of Telangana, in two villages:  Chinna 
Tandrapadu and Mandoddi located in Ieeja mandal at 
16.01590E and 77.684810N (Lat/Long). The villages 
predominantly cultivate rice using two established methods:  
dry-direct seeded rice (DDSR) and transplanted rice (TP-
R). The primary  sources of irrigation is rajolibanda lift 
irrigation project. As these villages are located at the tail 
end of the irrigation system, farmers in the region largely 
adopt the dry direct-seeded rice method due to its water and 
time-saving advantages for rice establishment (Figure 1).
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Figure 1: Location of the study area
2.2.  Satellite images and ancillary data

The satellite data used for the study was Sentinel-1, which 
was downloaded from the European Space Agency. The 
data was pre-processed for all corrections, including speckle 
filtering, terrain corrections, and radiometric corrections. 
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Then, a logarithmic transformation was performed to extract 
the backscatter values from the images. The images are freely 
accessible from the Copernicus Open Access Hub. A total 
of 17 Level-1 GRD (Ground Range Detected) images 
with normalized backscatter over the study area were used 
in the study. The ancillary data included the crop calendar 
for rice cultivation in the area. Specifically, direct seeding 
starts during the early kharif season, i.e., from mid-June to 
mid-July, when the crop is sown during the early showers 
of the monsoon in the southern part of India. Transplanting 
of rice begins with the release of water from the irrigation 
project, i.e., from mid-August to mid-September.

2.3.  Collection of ground truth data 

The cropped area of the study location was surveyed to 
identify rice-growing regions. Ten random points with 
severe lodging were selected for data collection and for 
extracting backscatter values to facilitate detailed analysis 
in the study.

2.4.  Statical analysis 

Backscatter values were extracted from both lodged and 
unlodged crops and analyzed using Microsoft Excel 2019. 
A paired t-test with equal variance was performed, as the 
backscatter values were obtained from the same crop under 
different treatments. 

2.5.  Rain fall data

The total actual rainfall received during the crop growth 
period was 1078 mm, compared to the normal rainfall of 
486 mm for the region, resulting in excess rainfall during 
this period. The total number of rainy days was 62. Rainfall 
is a major factor influencing crop lodging, particularly during 
October when the crop is at the flowering stage. Rainfall 
during this period contributed to significant lodging in the 
region (Figure 2).

2.6.  Methodology

The downloaded images were pre-processed, and layer 
stacking was performed. Spectral signatures were then 
extracted from the images and subjected to statistical 
analysis to discriminate the lodged crops. A detailed 
methodology flowchart is provided in Figure 3.
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Figure 2: Graph of rainfall during the crop growth season

Figure 3: Detailed methodology flowchart

 

Preprocessing of sentinel 1A (Radiometric, Speckle 
filtering, Terrain Correction) 

Layer stacking the images of the two bands separately 
to VV and VH bands  

Clipping image to area of interest by using the shape 
files of the study area  

Extraction of the back scatter values of the by 
overlaying the AOIs around the GPS points  

Downloading the sentinel 1A 

Digitization of field 
boundaries  

Ground truth points 
collected in the study 

area  

Statistical Analysis 

3.  RESULTS AND DISCUSSION

3.1.  Extraction of spectral signatures 

The 17 images were layer-stacked to create a composite. 
GPS data were overlaid, and areas of interest (AOIs) 
were selected. From these AOIs, backscatter values were 
extracted, and the mean backscatter of the four polarizations 
was analyzed (Kumar et al., 2021). To align with the crop 
growth period, the stages of crop development were carefully 
matched. The major lodging problem in rice was observed 
during the flowering and grain-filling stages, which required 
proper monitoring to effectively discriminate the crop. Both 
spectral and temporal profiles showed significant differences.

The characterization of lodged crops was based on two key 
assumptions:

• Lodged crops lying flat on the ground scatter more 
backscatter compared to standing crops due to significant 
loss of backscatter caused by internal collisions within the 
plant canopy.

• Differences in the angle of incidence and angle of 
reflectance resulted in variations in backscatter values across 
all four polarizations.

3.2.  Temporal profiling of the back scatterings from VV and 
VH polarisations

The rice crop exhibited temporal variability in VH 
polarization backscatter values throughout the growing 
season (Table 1). The highest backscatter value, -16.8 dB, 
was observed during the land preparation stage, and in later 
stages, the dB values ranged from -17 to -19.8 dB for the 
unlodged crop. Significant variability in backscatter values 
was observed during flowering, dough, and maturity stages, 
with the values for lodged crops being notably higher, 
ranging from -15.8 to -13.9 dB (Figure 4). These higher 
values may be attributed to reduced absorption from the crop 
canopy and increased backscatter from the target.

The crop also displayed significant temporal variability 
in backscatter values in VV polarization throughout the 
growth season (Table 2). For the unlodged crop, backscatter 
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Table 1: Spectral back scattering values of VH band

VH Lodged direct seeded rice

Sl. No. land preparation Sowing  Germination establishment stage Tillering Maximum tillering 

LDSR1 -16.366 -15.945 -18.901 -18.821 -17.142 -18.005

LDSR2 -15.28 -16.521 -20.162 -16.742 -17.744 -18.391

LDSR3 -12.866 -17.954 -20.194 -17.651 -17.923 -18.773

LDSR4 -15.447 -16.845 -19.722 -17.211 -16.122 -16.643

LDSR5 -17.515 -17.223 -20.481 -20.223 -18.496 -18.707

LDSR6 -16.561 -17.742 -21.246 -19.164 -18.606 -18.002

LDSR7 -15.452 -15.627 -19.271 -16.948 -15.423 -16.869

LDSR8 -17.376 -17.207 -19.7 -19.437 -19.405 -18.59

LDSR9 -16.584 -16.788 -20.667 -16.219 -16.282 -19.018

LDSR10 -16.749 -16.056 -18.567 -16.315 -16.481 -17.863

Un-lodged direct seeded rice

UDSR1 -16.366 -15.945 -18.901 -18.821 -17.142 -18.005

UDSR2 -15.28 -16.521 -20.162 -16.742 -17.744 -18.391

UDSR3 -12.866 -17.954 -20.194 -17.651 -17.923 -18.773

UDSR4 -15.447 -16.845 -19.722 -17.211 -16.122 -16.643

UDSR5 -17.515 -17.223 -20.481 -20.223 -18.496 -18.707

UDSR6 -16.561 -17.742 -21.246 -19.164 -18.606 -18.002

UDSR7 -15.452 -15.627 -19.271 -16.948 -15.423 -16.869

UDSR8 -17.376 -17.207 -19.7 -19.437 -19.405 -18.59

UDSR9 -16.584 -16.788 -20.667 -16.219 -16.282 -19.018

UDSR10 -16.749 -16.056 -18.567 -16.315 -16.481 -17.863

 

 

  

Figure 4: Graph showing spectral backscattering values
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Figure 5: Graph showing spectral backscattering values

values ranged from -8.9 to -13.4 dB. The backscatter values 
decreased during crop growth but began to increase at 
maturity. Significant differences were found in backscatter 
values during the flowering, dough, and maturity stages 
for VV polarization (Figure 5). In contrast, for lodged 
crops, backscatter values were higher during the flowering, 
dough, and maturity stages, ranging from -9.2 to -12.2 dB. 
This increase in backscatter values can be attributed to the 
reduced obstacles for reflectance caused by the lodging.

3.3.  Temporal profiling of the back scatterings cross polarisations 
VV VH-1 and VH VV-1

The temporal backscatter in both cross-polarizations did 
not show any significant difference between lodged and 
unlodged rice crops. However, there was an increasing trend 
in backscatter during the crop growth, reaching its peak 
during the tillering stage, followed by a reduction at maturity 
in the case of VV and VH-1 (Table 3). Similarly, a reduction 
in backscatter values was observed with crop growth in the 
VV and VV-1 bands, with an increase in backscatter values 

Reddy et al., 2025
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VH Lodged direct seeded rice

Sl. No. Stem elongation panicle initiation Heading Flowering Dough stage Maturity Harvesting 

LDSR1 -19.622 -17.634 -17.625 -16.421 -14.43 -15.667 -17.87

LDSR2 -16.641 -16.073 -18.48 -16.948 -14.387 -15.372 -17.77

LDSR3 -16.577 -16.068 -18.021 -14.596 -11.499 -14.759 -18.354

LDSR4 -16.914 -17.116 -18.69 -15.831 -13.546 -15.229 -16.387

LDSR5 -15.66 -16.405 -18.781 -14.536 -12.249 -13.277 -18.288

LDSR6 -17.604 -17.171 -17.697 -15.648 -14.174 -15.87 -17.947

LDSR7 -17.785 -16.126 -17.293 -17.051 -15.265 -15.328 -15.875

LDSR8 -18.657 -16.567 -17.793 -15.674 -13.696 -13.385 -15.439

LDSR9 -17.562 -16.224 -17.814 -16.235 -14.695 -14.96 -17.717

LDSR10 -18.188 -17.93 -17.311 -15.519 -15.765 -14.423 -17.917

Un-lodged direct seeded rice

UDSR1 -19.622 -17.634 -17.625 -15.996 -15.922 -17.249 -18.383

UDSR2 -16.641 -16.073 -18.48 -17.053 -18.747 -17.388 -17.741

UDSR3 -16.577 -16.068 -18.021 -16.199 -15.632 -17.717 -18.348

UDSR4 -16.914 -17.116 -18.69 -16.588 -17.209 -17.787 -17.93

UDSR5 -15.66 -16.405 -18.781 -15.969 -16.012 -16.031 -15.602

UDSR6 -17.604 -17.171 -17.697 -16.451 -16.388 -16.258 -15.475

UDSR7 -17.785 -16.126 -17.293 -17.216 -17.135 -17.241 -16.094

UDSR8 -18.657 -16.567 -17.793 -17.437 -16.215 -16.16 -14.949

UDSR9 -17.562 -16.224 -17.814 -16.369 -17.395 -17.521 -18.041

UDSR10 -18.188 -17.93 -17.311 -18.092 -17.28 -17.177 -19.281

Table 2: Spectral back scattering values of VV band

VV Lodged direct seeded rice

Sl. No land preparation   Sowing  Germination establishment stage Tillering Maximum tillering 

LDSR1 -6.769 -9.281 -11.451 -10.069 -6.82 -9.656

LDSR2 -9.848 -9.517 -12.223 -10.287 -8.489 -10.702

LDSR3 -10.096 -10.538 -15.261 -10.256 -8.659 -9.681

LDSR4 -8.265 -8.018 -11.29 -11.561 -8.101 -7.816

LDSR5 -9.89 -9.266 -15.743 -10.281 -9.964 -9.942

LDSR6 -10.027 -8.27 -13.782 -11.545 -8.963 -11.098

LDSR7 -8.883 -8.707 -12.317 -10.758 -6.715 -6.261

LDSR8 -10.283 -8.917 -15.373 -12.481 -8.303 -11.097

LDSR9 -10.715 -9.29 -13.53 -11.733 -8.878 -10.229

LDSR10 -10.187 -7.08 -12.479 -10.303 -8.14 -7.212

Un-lodged direct seeded rice

UDSR1 -6.769 -9.281 -11.451 -10.069 -6.82 -9.656

UDSR2 -9.848 -9.517 -12.223 -10.287 -8.489 -10.702

UDSR3 -10.096 -10.538 -15.261 -10.256 -8.659 -9.681

 International Journal of Bio-resource and Stress Management, 16(2): 01-11
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Table 2: Continue...

VV Lodged direct seeded rice

Sl. No Stem elongation Panicle initiation Heading Flowering Dough stage Maturity Harvesting 

LDSR1 -10.532 -13.383 -10.165 -9.902 -12.413 -13.602 -10.4655

LDSR2 -10.169 -13.7 -10.114 -9.181 -11.959 -14.23 -10.8405

LDSR3 -11.918 -12.532 -9.747 -7.954 -7.171 -12.811 -10.5985

LDSR4 -9.086 -12.85 -8.121 -8.644 -8.361 -11.597 -9.68485

LDSR5 -12.179 -13.79 -10.549 -6.849 -9.393 -11.674 -10.905

LDSR6 -12.043 -14.863 -11.818 -11.598 -11.458 -13.677 -11.6432

LDSR7 -8.24 -13.818 -11.323 -10.145 -8.63 -12.391 -9.991

LDSR8 -11.703 -15.818 -11.297 -6.858 -9.126 -11.232 -11.0776

LDSR9 -11.343 -13.631 -11.444 -11.193 -9.847 -12.681 -11.2445

LDSR10 -9.105 -13.434 -12.173 -11.77 -10.587 -13.005 -10.6338

Un-lodged direct seeded rice

UDSR1 -10.532 -13.383 -10.165 -11.197 -11.699 -13.444 -10.5954

 UDSR2 -10.169 -13.7 -10.114 -10.947 -14.262 -12.426 -12.1714

VV Lodged direct seeded rice

Sl. No land preparation   Sowing  Germination establishment stage Tillering Maximum tillering 

UDSR4 -8.265 -8.018 -11.29 -11.561 -8.101 -7.816

UDSR5 -9.89 -9.266 -15.743 -10.281 -9.964 -9.942

UDSR6 -10.027 -8.27 -13.782 -11.545 -8.963 -11.098

UDSR7 -8.883 -8.707 -12.317 -10.758 -6.715 -6.261

UDSR8 -10.283 -8.917 -15.373 -12.481 -8.303 -11.097

UDSR9 -10.715 -9.29 -13.53 -11.733 -8.878 -10.229

UDSR10 -10.187 -7.08 -12.479 -10.303 -8.14 -7.212

UDSR3 -11.918 -12.532 -9.747 -12.451 -13.734 -13.037 -11.7435

UDSR4 -9.086 -12.85 -8.121 -12.722 -12.236 -12.084 -11.5393

UDSR5 -12.179 -13.79 -10.549 -11.981 -12.838 -8.821 -11.7618

UDSR6 -12.043 -14.863 -11.818 -10.869 -11.581 -9.315 -11.7087

UDSR7 -8.24 -13.818 -11.323 -11.721 -12.015 -10.3 -10.9378

UDSR8 -11.703 -15.818 -11.297 -11.689 -11.064 -9.558 -11.3455

UDSR9 -11.343 -13.631 -11.444 -11.201 -10.841 -10.95 -11.9713

UDSR10 -9.105 -13.434 -12.173 -11.933 -11.58 -11.762 -11.7784

Table 3: Spectral backscattering of VV VH-1 band

VV VH-1 Lodged direct seeded rice

Sl. No land preparation   Sowing  Germination establishment stage Tillering Maximum tillering 

LDSR1 9.597 6.664 7.451 8.752 10.321 8.35

LDSR2 5.432 7.004 7.939 6.455 9.255 7.69

LDSR3 7.182 8.827 8.432 5.651 8.021 8.827

LDSR4 2.77 7.416 4.934 7.395 9.264 9.093

LDSR5 7.625 7.958 4.737 9.942 8.532 8.765

Reddy et al., 2025
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Table 3: Continue...

VV VH-1 Lodged direct seeded rice

Stem elongation panicle initiation Heading Flowering Dough stage Maturity Harvesting 

 LDSR1 9.09 5.626 4.242 6.255 4.528 3.254 4.268

LDSR2 6.473 5.565 4.779 6.834 5.206 3.412 3.54

LDSR3 7.829 4.923 5.84 7.71 4.902 6.868 4.791

LDSR4 4.658 4.91 5.489 4.848 3.545 7.588 5.543

LDSR5 3.481 4.16 4.991 3.987 5.399 3.884 6.614

LDSR6 5.56 4.953 2.834 3.83 2.576 4.412 4.269

LDSR7 9.545 4.431 3.475 5.727 5.12 6.698 3.484

LDSR8 6.954 5.045 1.975 4.377 6.838 4.259 4.207

LDSR9 6.219 4.558 4.183 4.791 3.502 5.112 5.036

LDSR10 8.851 4.983 3.832 3.279 4.201 4.158 4.941

Un-lodged direct seeded rice

UDSR1 9.09 5.626 4.242 6.255 4.528 3.254 4.268

UDSR2 6.473 5.565 4.779 6.834 5.206 3.412 3.54

UDSR3 7.829 4.923 5.84 7.71 4.902 6.868 4.791

UDSR4 4.658 4.91 5.489 4.848 3.545 7.588 5.543

UDSR5 3.481 4.16 4.991 3.987 5.399 3.884 6.614

UDSR6 5.56 4.953 2.834 3.83 2.576 4.412 4.269

UDSR7 9.545 4.431 3.475 5.727 5.12 6.698 3.484

UDSR8 6.954 5.045 1.975 4.377 6.838 4.259 4.207

UDSR9 6.219 4.558 4.183 4.791 3.502 5.112 5.036

UDSR10 8.851 4.983 3.832 3.279 4.201 4.158 4.941

VV VH-1 Lodged direct seeded rice

Sl. No land preparation   Sowing  Germination establishment stage Tillering Maximum tillering 

LDSR6 6.533 9.472 7.464 7.619 9.643 6.903

LDSR7 6.569 6.92 6.954 6.19 8.708 10.608

LDSR8 7.093 8.29 4.327 6.955 11.102 7.494

LDSR9 5.869 7.498 7.137 4.486 7.404 8.789

LDSR10 6.301 9.539 6.139 5.677 8.354 11.069

Un-lodged direct seeded rice

UDSR1 9.597 6.664 7.451 8.752 10.321 8.35

UDSR2 5.432 7.004 7.939 6.455 9.255 7.69

UDSR3 7.182 8.827 8.432 5.651 8.021 8.827

UDSR4 2.77 7.416 4.934 7.395 9.264 9.093

UDSR5 7.625 7.958 4.737 9.942 8.532 8.765

UDSR6 6.533 9.472 7.464 7.619 9.643 6.903

UDSR7 6.569 6.92 6.954 6.19 8.708 10.608

UDSR8 7.093 8.29 4.327 6.955 11.102 7.494

UDSR9 5.869 7.498 7.137 4.486 7.404 8.789

 UDSR10 6.301 9.539 6.139 5.677 8.354 11.069

 International Journal of Bio-resource and Stress Management, 16(2): 01-11



© 2024 PP House

Table 4: Spectral back scattering of VH VV-1 band

 VH VV-1 Lodged direct seeded rice

Sl. No land preparation   Sowing  Germination establishment stage Tillering Maximum tillering 

LDSR1 -9.597 -6.664 -7.451 -8.752 -10.321 -8.35

LDSR2 -5.432 -7.004 -7.939 -6.455 -9.255 -7.69

LDSR3 -2.77 -7.416 -4.934 -7.395 -9.264 -9.093

LDSR4 -7.182 -8.827 -8.432 -5.651 -8.021 -8.827

LDSR5 -7.625 -7.958 -4.737 -9.942 -8.532 -8.765

LDSR6 -6.533 -9.472 -7.464 -7.619 -9.643 -6.903

LDSR7 -6.569 -6.92 -6.954 -6.19 -8.708 -10.608

LDSR8 -7.093 -8.29 -4.327 -6.955 -11.102 -7.494

LDSR9 -5.869 -7.498 -7.137 -4.486 -7.404 -8.789

LDSR10 -6.965 -8.187 -6.325 -6.545 -8.528 -10.563

Un-lodged direct seeded rice

UDSR1 -9.597 -6.664 -7.451 -8.752 -10.321 -8.35

UDSR2 -5.432 -7.004 -7.939 -6.455 -9.255 -7.69

UDSR3 -2.77 -7.416 -4.934 -7.395 -9.264 -9.093

UDSR4 -7.182 -8.827 -8.432 -5.651 -8.021 -8.827

UDSR5 -7.625 -7.958 -4.737 -9.942 -8.532 -8.765

UDSR6 -6.533 -9.472 -7.464 -7.619 -9.643 -6.903

UDSR7 -6.569 -6.92 -6.954 -6.19 -8.708 -10.608

UDSR8 -7.093 -8.29 -4.327 -6.955 -11.102 -7.494

UDSR9 -5.869 -7.498 -7.137 -4.486 -7.404 -8.789

UDSR10 -6.965 -8.187 -6.325 -6.545 -8.528 -10.563

Table 4: Continue...

 VH VV-1 Lodged direct seeded rice

Sl. No Stem elongation panicle initiation Heading Flowering Dough stage Maturity Harvesting 

LDSR1 -9.09 -5.626 -4.242 -6.255 -4.528 -3.254 -4.268

LDSR2 -6.473 -5.565 -4.779 -6.834 -5.206 -3.412 -3.54

LDSR3 -4.658 -4.91 -5.489 -4.848 -3.545 -7.588 -5.543

LDSR4 -7.829 -4.923 -5.84 -7.71 -4.902 -6.868 -4.791

LDSR5 -3.481 -4.16 -4.991 -3.987 -5.399 -3.884 -6.614

LDSR6 -5.56 -4.953 -2.834 -3.83 -2.576 -4.412 -4.269

LDSR7 -9.545 -4.431 -3.475 -5.727 -5.12 -6.698 -3.484

LDSR8 -6.954 -5.045 -1.975 -4.377 -6.838 -4.259 -4.207

LDSR9 -6.219 -4.558 -4.183 -4.791 -3.502 -5.112 -5.036

LDSR10 -9.718 -5.718 -3.976 -3.704 -3.782 -3.392 -4.769

Un-lodged direct seeded rice

UDSR1 -9.09 -5.626 -4.242 -6.255 -4.528 -3.254 -4.268

UDSR2 -6.473 -5.565 -4.779 -6.834 -5.206 -3.412 -3.54

UDSR3 -4.658 -4.91 -5.489 -4.848 -3.545 -7.588 -5.543

Table 4: Continue...
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VH VV-1 Lodged direct seeded rice

Sl. No. Stem elongation panicle initiation Heading Flowering Dough stage Maturity Harvesting 

UDSR4 -7.829 -4.923 -5.84 -7.71 -4.902 -6.868 -4.791

UDSR5 -3.481 -4.16 -4.991 -3.987 -5.399 -3.884 -6.614

UDSR6 -5.56 -4.953 -2.834 -3.83 -2.576 -4.412 -4.269

UDSR7 -9.545 -4.431 -3.475 -5.727 -5.12 -6.698 -3.484

UDSR8 -6.954 -5.045 -1.975 -4.377 -6.838 -4.259 -4.207

UDSR9 -6.219 -4.558 -4.183 -4.791 -3.502 -5.112 -5.036

UDSR10 -9.718 -5.718 -3.976 -3.704 -3.782 -3.392 -4.769

Figure 6: Graph showing spectral backscattering values

Figure 7: Graph showing spectral backscattering values

observed at both early and late stages.

The increase in spectral backscatter in lodged crops is 
attributed to the angle of incident radiation reaching the 
crop. For lodged crops, the angle with the ground may 
range from 0° to 45°, depending on the severity of lodging. 
As microwave radiation is highly sensitive to the surface 
characteristics of the target, the dielectric properties (soil 
type and moisture) and canopy water content play a key 
role (McNairn et al., 2009; Cable et al., 2014; Forkuor et 
al., 2014; Canisius et al., 2018). During the early stages of 
establishment, backscatter is primarily attributed to the soil 
background, while later, as the crop matures and covers the 
ground, the backscatter from the crop decreases, leading 
to lower values (Freeman and Durden, 1998; White et al., 
2015).

3.4.  Statical analysis of backscatter values

The spectral backscatter from the four polarizations was 
evaluated using a paired t-test with equal variances. The 
results indicated that the VV and VH polarizations showed 
significant differences at the 0.05% and 0.01% levels in 
discriminating lodged crops from unlodged crops. Similar 

Table 5: Comparison of different polarizations using paired t test

Stage of the crop Polarisation

VV VH VV VH-1 VH VV-1

Flowering 3.23519252479436** 2.55750754383321* 1.1243086 1.0022

Dough 3.69924213632094** 5.57239972572947** -1.12336 1.152

Maturity 3.57509062297509** 6.3541070198651** 0.2011518 0.4583

T statistics **at (p=0.05) LOS is 2.101, T statistics value *at (p=0.01) LOS is 2.835

studies have reported the ability of VV and VH bands to 
detect lodged crops in maize, wheat, and other crops (Yang 
et al., 2015; Chen et al., 2016; Zhao et al., 2017).

4.   CONCLUSION  

The study mainly focused on the discrimination of lodged 
rice crop from the unlodged crop at the flowering, 

dough, and maturity stages. The polarizations that were 
helpful in discriminating were VV and VH. The cross-

polarization did not have any segregation effect on the 
lodging of the rice crop. The future line of work included 
mapping of the risk zones and the development of crop 
models that simulated climate data and its effects on crop 
lodging.
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