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The experiment was conducted during 2023 in kharif season ( June–September) at GKVK, Bangalore, Karnataka, India 
aimed to develop a stoichiometric model for groundnut. Regression equations were formulated using historical data on key 

weather parameters, including Growing Degree Days (GDD), Solar Radiation (SR), Actual Evapotranspiration (AET) and 
pod yield from the years 2001 and 2003–2014. The observed total dry matter at the end of first four stages i.e., 30 DAS, 50% 
flowering, pod initiation, pod filling and predicted dry matter at harvest which was used as one of the independent variables 
to predict the pod yield. The model showed good agreement between observed and predicted values with higher coefficient 
of determination (R2=0.77) at pod filling stage and it was lower at 30 days after sowing stage (R2=0.08). The developed model 
was validated for two dates of sowing over four years (2015–2018). To assess its reliability, the model was validated over four 
years (2015–2018) for two different sowing dates. The validation results indicated a strong predictive accuracy for the first 
sowing date across all years, except in 2018, where the second sowing date exhibited better alignment with observed values. 
The developed model was as an effective tool for predicting total dry matter production at various growth stages and estimating 
pod yield well before harvest, with an accuracy of up to 77%. 
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1.   INTRODUCTION

Agriculture in India is a dynamic and evolving sector 
that remains a cornerstone of the country's economic 

development (Vinaya et al., 2017). Approximately 60% 
of the Indian population depends on agriculture for 
their livelihood and it is the largest source of income & 
employment for rural households. Weather plays a crucial 
role in determining the success or failure of agricultural 
activities from land preparation to realization of the yield 
(Mudalagiriyappa et al., 2022). According to Jasna et al. 
(2014), crop yields in India will decline by 4.5 to 9.0% as a 
result of weather abnormalities. The yield is directly affected 
by the unfavourable weather conditions (Thimmegowda et 
al., 2023).

Understanding crop phenology is crucial as biomass output 
and seed yield depend heavily on environmental variables 
during different phenophases (Alsubhi and Alzahrani, 
2024). Phenological development is strongly influenced 
by meteorological variations during the growing season 
(Krupashree et al., 2022). Thus, examining phenological 
events in groundnut helps understand growth processes 
related to weather parameters, radiation balance, dry matter 
production, and yield. Accurate yield prediction models are 
essential for minimizing crop losses due to extreme weather 
(Elbasi et al., 2023). Crop models are computer equations 
that mimic crop growth and development.

Crop weather modelling forms a vital link between data 
science, meteorology, and agriculture. Predicting crop 
responses to changing weather is essential in an era of 
increasingly unpredictable climate patterns. This forecasting 
ability is key to ensuring food security, promoting sustainable 
farming, and addressing challenges posed by a changing 
environment. Crop weather models are “the product of two 
or more factors, each representing the simplified functional 
relationship between a particular plant response (e.g., yield) 
and the variations in selected weather parameters at different 
plant development phases” (Baier, 1979). These models 
serve as valuable decision-support tools, helping farmers 
to optimize crop management practices, enhance resource-
use efficiency, reduce risks, and maximize yield in response 
to weather variation and climate change. These are useful 
to farmers to decide in advance their future prospects and 
course of action.

Groundnut (Arachis hypogaea L.) is one of the most 
important oilseed crops of India. It is a leguminous 
plant and widely cultivated in the tropics and subtropics 
(Thimmegowda et al., 2007). It is also known as ‘peanut’ 
‘earthnut’ and ‘monkey nut’. It is valued for its higher oil 
content and edible seeds. It is the 4th most important source 
of edible oil and 3rd most important source of vegetable 
protein in the world. Groundnut covers 32.7 mha with the 

production of 53.9 mt with the productivity of 1.648 t ha-1 
(Anonymous, 2022). According to Anonymous (2021), the 
potential average yield of groundnuts is 2.5 to 2.7 t ha-1, but 
the low production is caused by diverse abiotic and biotic 
factors. Extreme temperatures, drought stress and other 
weather factors affecting groundnut production (Daudi et 
al., 2018). 

Despite its economic and agricultural importance, 
research on growth models for groundnut remains limited 
(Rajegowda et al., 2010). In response to this gap, an effort 
was made to develop a stoichiometric crop weather model 
specifically for groundnut. This model aimed to predict 
dry matter accumulation at different growth stages and 
estimate pod yield well before harvest. The study examined 
the influence of key weather parameters, including actual 
evapotranspiration (AET), growing degree days (GDD), 
and solar radiation (SR), on dry matter production and 
final pod yield. The primary objective was the development 
and validation of a stoichiometric model in groundnut 
to quantitatively relate these weather variables with crop 
growth dynamics, enabling accurate prediction of dry matter 
accumulation and pod yield across different phenological 
stages and sowing dates.

2.   MATERIALS AND METHODS

2.1.  Study location

The research work was conducted during 2023 in kharif 
season ( June–September) at GKVK, Bangalore which is 
situated in the Karnataka state, India with the latitude of 13o 
05' N, longitude of 77o 34' East with altitude of 930 m msl. 
The district comes under Agro Climatic Zone-V: Eastern 
Dry Zone with normal annual rainfall of 941.5 mm and 
the normal maximum and minimum temperature of 29.2°C 
and 17.9°C, respectively. The mean bright sunshine hour is 
7.1 hr. day-1. The major land use cover includes groundnut, 
finger millet, pigeon pea etc. 

2.2.  Nature and source of data

The long-term data of weather parameters like rainfall, 
maximum and minimum temperature, bright sunshine 
hour, potential evapotranspiration and groundnut yield 
during 2000–2018 was collected from All Coordinated 
Research Project on Agrometeorology (AICRPAM), 
GKVK, Bangalore. The accumulated weather parameters 
were calculated at the end of each growth stage by summing 
the respective values over time, providing a comprehensive 
assessment of meteorological influences on groundnut 
productivity. To ensure robust model development, the 
dataset was divided into two subsets: 75% of the data was 
allocated for calibration, helping to establish the predictive 
relationships between weather parameters and yield, while 
the remaining 25% was reserved for validation to test the 
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accuracy and reliability of the developed models. This 
method aligns with established modeling practices (Uno et 
al., 2005; Li et al., 2017; Montaseri et al., 2018), ensuring 
that the models are not only well-fitted to historical data 
but also capable of accurately forecasting yield outcomes 
under varying climatic conditions. 

2.3.  Treatment and varietal details

The phenological growth stages of the groundnut crop were 
categorized into five distinct phases: T1, from sowing to 
30 days after sowing (30 DAS); T2, from 30 DAS to 50% 
flowering; T3, from 50% flowering to the pod initiation 
stage; T4, from pod initiation to the pod filling stage; and 
T5, from the pod filling stage to harvest. The variety used 
in the study was TMV-2, which has a crop duration of 125 
days. For the development and validation of the model, two 
sowing dates were considered for each year from 2000 to 
2018-D1 in July and D2 in August.

2.4.  Model description

A stoichiometric crop weather model, also known as a 
crop weather relationship model, is a type of mathematical 
model that relates weather variables to crop growth and 
development. It is used to predict groundnut growth and 
pod yield based on the dry matter accumulated at each stage. 
These models are typically based on empirical relationship 
derived from field observation. Models provide insight 
into how changes in weather patterns may impact crop 
productivity by quantifying the stoichiometric relationship 
between meteorological variables and crop growth processes. 
Stoichiometric crop weather models can be useful tools 
in agricultural research and management. They can help 
farmers and agronomists to make decisions about planting 
date, irrigation schedule, and nutrient management. These 
models can also be used to assess the potential impact of 
climate change on crop production and identify strategies 
for adaptation. 

2.5.  Inputs used for development of the model

The derived weather parameters like growing degree days 
(GDD), solar radiation (SR) and actual evapotranspiration 
(AET) were derived using weather data of maximum 
temperature, minimum temperature, bright sunshine hours, 
rainfall and potential evapotranspiration. The data on dry 
matter accumulation at the end of each stage and final pod 
yield was used for the development of coefficients in the 
model. The daily weather data was used to calculate the 
following indices.

2.6.  Growing degree days (GDD)

Growing degree days at different phonological stages were 
calculated by summation of daily mean temperature and 
subtracting with base temperature for a corresponding 
period from sowing.

GDD (0days) =
(Tmax+Tmin) – Tb2S

Where,

Tmax and Tmin are maximum and minimum temperature, 
respectively

Tb=Base temperature below which crop growth ceases 
Groundnut=10°C (Rao et al., 1992).

2.7.  Solar radiation (SR)

Solar radiation refers to the energy emitted by the sun in 
the form of electromagnetic waves. The data on bright sun 
shine hour was used to calculate the solar radiation. The 
DSSAT (Decision Support System on Agro technology 
Transfer) model was used to convert the bright sunshine 
hours (hrday-1) into solar radiation (MJm-2day-1) using the 
following formula,

Q = Q0    a+      bn
N

( (

Where,

Q=solar radiation (MJ m-2 day-1)

Qo=maximum solar energy on clear cloudy day (constant)

a and b=constants for the specific location 

n=actual bright sunshine hour (hr day-1)

N=maximum possible bright sun shine hour (hr day-1) 

2.8.  Actual evapotranspiration (AET)

"Actual Evapotranspiration" (AET) is the total amount 
of water that is evaporated from the earth's surface and 
transpired by plants into the atmosphere. AET was 
calculated by following the FAO water balance method 
(Doorenbos and Pruitt, 1977). Soil water storage (mm) at 
the end of ith day has been calculated using the equation:

Si=Si-1+Pi–WRi

Where, 

Si= Water retained (mm) in the soil at the end of ith day

Si-1= Water available (mm) in the beginning of the ith day

Pi= Precipitation (mm) during the ith day

WRi= water requirement of the crop during ith day

Where, 

AETi=WRi, when Si>WRi  

AETi=Si, when Si<WRi 

Actual evapotranspiration (AET) is equal to potential water 
requirement (WR) as long as the soil moisture content is 
greater than or equal to WR and the actual ET (AET) is 
equal to soil moisture content (S) when the soil moisture 
content is less than water requirement. 

Water requirement (WRi) by the crop was computed using 
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the equation:

WRi=Kci* PETi

Where,   

WRi=Evapotranspiration by the crop during ith day

Kci=Crop coefficient during ith day 

PETi=Potential Evapotranspiration during ith day

2.9.  Development of stoichiometric model 

The field experiment data of 2001, 2003–2014 (i.e., two 
sets of data in each year) were used to formulate multiple 
linear regression equations relating to the GDD, SR and 
AET with the accumulated dry matter at each phenological 
growth stage as well as the ultimate pod yield. The 
coefficients of determinant indicate the climatic parameters 
considered and the initial TDM (total dry matter) used to 
estimate the final TDM in each stage. 

Crop weather relationships have been generated to know 
the influence of weather parameter on accumulation of the 
dry matter. The initial TDM (Total Dry Matter) of the crop 
being exposed to the environment has been considered as 
one of the independent parameters along with the GDD, 
SR, and AET to know the bio-mass accumulated at the 
end of each stage.

The multiple linear regression equations (noted below) 
by considering parameters such as GDD, SR, and AET 
as well as the initial TDM as independent parameters 
and the Total Dry Matter accumulated at the end of each 
stage as a dependent parameter for all the stages have been 
generated in order to understand the influence of these 
crucial parameters on the growth of crops in each stage. 

T1=(A1X1+B1Y1+C1Z1) ..............................(1) 

T2=T1S2+(A2X2+B2Y2+C2Z2) .....................	(2) 

T3=T2S3+(A3X3+B1Y3+C3Z3) .....................	(2) 

T4=T3S4+(A4X4+B4Y4+C4Z4) .....................	(4) 

T5=T4S5+(A5X5+B5Y5+C5Z5) .....................	(5) 

Where,

Subscript indicates the respective stages, 

T1, T2, T3, T4 and T5=dry matter accumulated at the end 
of each stage

A, B and C=Coefficient of determinants of the variables 
i.e., GDD, SR, AET

X (GDD), Y (SR), Z (AET),=coefficients of determinants 
of input accumulated. 

S2, S3, S4, S5=coefficients of initial TDM for respective stage 
of the crop

The pod yield as influenced by the dry matter accumulated 
at the end of each stage is related in the multiple linear 
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regression equation, 

Yg=IT1 (O)+JT2 (O)+KT3 (O)+LT4 (O)+MT5 (P) 

Where, 

T1 (O), T2 (O), T3 (O) and T4 (O)=observed TDM at the 
end of first four stages 

T5 (P)=predicted total dry-matter for 5th stage. 

I, J, K, L, M and N=coefficients of TDM for respective 
stages

2.10.  Model calibration and validation 

Calibration is the process of adjusting the model parameters 
to improve the agreement between model simulations and 
observed data. The model was calibrated with the data 
(that included phenology, biomass and yield components) 
collected from AICRP on Agro-Meteorology, GKVK, 
Bengaluru. 

Validation involves the comparison of model output 
with independent field observation or experimental data 
that were not included during model development. The 
developed stoichiometric model was validated with the data 
from 2015–2018 for two dates of sowing (D1, D2).

2.11.  Statistical approach of model evaluation

Statistical approaches for model evaluation involve using 
various techniques to assess the performance of a predictive 
model.

2.12.  Coefficient of determination (R2 value)

It is a statistical measure which represents the proportion 
of variance in the dependent variable that can be explained 
by the independent variable in a regression model. It is used 
to evaluate the goodness of fit. The value ranges from 0–1. 
The higher value indicates better fit of the model.

2.13.  Correlation coefficient (r)

It quantifies the strength and direction of the linear relation 
between two variables. The value ranges from -1 to +1.

r =
(xi – x) (yi – y)S - -

(xi – x)2   (yi – y)2S - -S

Where,

r=Correlation coefficient

x, y=two variables

xi, yi=values of two variables

x, y=mean of two variables

2.14.  Root mean square error (RMSE)

RMSE is used to assess the accuracy and precision of a 
model’s performance. A lower RMSE indicates better 
accuracy and smaller average prediction error. Higher 

- -
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3.   RESULTS AND DISCUSSION

3.1.  Development of the stoichiometric crop weather model

The observed total dry matter at end of first four stages 
i.e., 30 DAS, 50% flowering, pod initiation, pod filling 
stage and predicted dry matter at harvest stage was used as 
independent variable (initial biomass) along with the derived 
weather parameters and pod yield was used as dependent 
variable for the development of regression equation. The 
multiple regression equations emerged between weather 
parameters, TDM and pod yield is presented in Table 1.

The regression equations (Table 1) developed for predicting 
dry matter accumulation at different phenological stages of 
groundnut demonstrated varying levels of accuracy based 
on the coefficient of determination (R²). The lowest R² 
value (0.08) was observed at 30 DAS, indicating a weak 
relationship between initial biomass, growing degree days 
(GDD), solar radiation (SR), and actual evapotranspiration 
(AET) with dry matter accumulation. This may be attributed 
to the early stage of crop growth when environmental factors 
such as soil moisture availability, temperature fluctuations, 
and initial establishment conditions have a higher degree of 
variability (Reddy et al., 2017). As the crop advanced to the 
pod filling stage, the R² value increased to 0.77, indicating 
a stronger correlation between the weather parameters and 
dry matter accumulation, which can be explained by more 
stable plant growth conditions and efficient utilization of 
accumulated biomass (Patil et al., 2021).

The moderate R² values at 50% flowering (0.33), pod 
initiation (0.44) and harvesting (0.67) stages suggested that 
environmental variability had a moderate impact on dry 
matter accumulation. At these stages, factors such as nutrient 
availability, pest and disease infestation and variations in 
sunshine hours contributed to deviations from the predicted 
values (Sharma et al., 2019). The relatively higher accuracy 
at the harvesting stage (R²=0.67) indicated that cumulative 
weather effects over the entire crop cycle provides a better 
prediction of final biomass as environmental fluctuations 
tend to stabilize over time. This finding was supported by 

Table 1: Multiple regression equations between the derived weather parameters and total dry matter production and pod yield

Stages Regression Equations R2

30 DAS (T1) y=5.07-0.04 (X1)+0.16 (Y1)-0.02 (Z1) 0.08

50% flowering (T2) y=26.76+1.16 (T1)-0.08 (X2)+0.05 (Y2)+0.52 (Z2) 0.33

Pod initiation (T3) y=-271.05+1.59 (T2)+1.19 (X3)-0.66 (Y3)+3.34 (Z3) 0.44

Pod filling (T4) y=-181.54+0.81 (T3)-0.11 (X4)+0.3 (Y4)+3.76 (Z4) 0.77

Harvesting (T5) y=-815.52+2.96 (T4)+0.48 (X5)+0.13 (Y5)-1.09 (Z5) 0.67

Pod yield (Yg) y=315.03-0.38 T1(O)+0.002 T2(O)-0.11 T3(O)-0.61 T4(O)+0.24 T5(P)  0.38

For development of regression equations crop and weather datasets from 2001–2014 were exploited; X: Growing degree 
days (degree days); Y: Solar radiation (MJ m1-2 day-1); Z: Actual evapotranspiration (mm day-1); T1, T2, T3, T4, T5: Total dry 
matter at the end of each stage (g-2); (O): Observed dry matter (gm-2); (P): predicted dry matter (g-2) 

RMSE indicate greater variability and larger prediction 
error. The RMSE is calculated by taking the square root of 
the mean of the squared differences between the predicted 
and actual values.

RMSE =  ((yi – y)2)S -
i=1
n1

n–

Where, 

n=number of data points

yi= actual value of the target variable for the ith data point

yi= predicted value of the target variable for the ith data point

2.15.  Standard error

The standard error of the mean is a probabilistic statement 
about how the sample size provides a better bound on 
estimates of the population mean. The standard error is 
calculated by dividing the standard deviation from square 
root of sample size.

SE = s
n

2.16.  Per cent deviation 

Per cent deviation measures the degree to which individual 
data points in a statistic deviate from the average 
measurement of that statistic.

Per cent deviation = ( (Observed value-Simulated value
Simulated value

×100

2.17.  Multiple linear regression (MLR)

It is the measure of average relationship between more than 
two variables at a time.

Y=b0+b1x1+b2x2+…+bpxp

Where, 

Y=dependent variable

x1, x2 ,…xp=independent variables

b0, b1, b2,…bp=coefficients corresponding to the independent 
variables

-
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previous research indicating that long-term weather patterns 
significantly influence groundnut biomass accumulation and 
yield potential (Vinu et al., 2020).

For pod yield prediction, the regression model showed an 
R2 value of 0.38, suggesting a moderate fit. The moderate 
predictive capability could be due to the combined influence 
of multiple factors, including soil fertility, pest attacks 
and physiological stress caused by varying meteorological 
conditions. Previous studies have also reported similar levels 
of predictability in crop yield models where environmental 
variables play a significant role in influencing final yield 
(Padmalatha and Reddy, 2006). 

3.2.  Validation of developed stoichiometric crop weather model

Model validation is the process of comparing predictions 
of model with the field experiment data to evaluate the 
performance of a model on the data which was not used 
during the model development. In the present study, the 
developed Stoichiometric model was validated for 2015–
2018 with two dates of sowing in each year. 

The validation of the stoichiometric crop weather 
model for the year 2015 showed variations in dry matter 
accumulation predictions (Table 2). For the first date of 
sowing, the model performed well with a high coefficient 
of determination (87%) (Figure 1) and a lower RMSE 

Table 2: Validation of the stoichiometric crop weather model for the year 2015 (Date of sowing-I)

Stages Initial TDM GDD SR AET Observed DM (g m-2) Predicted DM (g m-2)

T1  430 537.4 39.89 86.58 73.05

T2 86.58 142.5 182 87.58 202.02 170.43

T3 202.02 278.2 345.2 73.16 388.5 397.74

T4 388.5 127.8 170 74.7 330.78 450.95

T5 330.78 404.5 493.8 42.31 404.04 375.82

Pod yield
TDM1 TDM2 TDM 3 TDM 4 TDM 5 (P) Yg (O) Yg (P)

86.58 202.02 388.5 330.78 375.82 172.26 128.22

% dev. 8.32 RMSE 55.44 

y = 1.1635x - 41.163
R² = 0.8744
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Figure 1: Coefficient of determination between observed and 
predicted yield for the year 2015 date of sowing I

(55.44 g m-2). These findings align with the earlier research 
conducted by Muralidhara and Rajegowda (2002). However, 
underestimations were observed at 30 DAS, 50% flowering 
and harvesting stages, while overestimations occurred at 
pod initiation and pod filling stages. These variations can 
be attributed to differences in soil moisture availability and 
temperature fluctuations, which are critical for groundnut 
growth, particularly during the reproductive stage (Ahmed 
et al., 2020).

The outcome of the model validation for the second date of 
sowing during 2015 is shown in Table 3. A moderate fit was 
recorded (R²=40%) (Figure 2), with an RMSE of 127.34 
g m-2. The discrepancies were attributed to variations in 

climatic conditions affecting crop growth and development, 
as groundnut is highly sensitive to temperature and 
water stress during its vegetative and reproductive phases 
(Craufurd et al., 2002). Additionally, delayed sowing can 
expose crops to increased temperatures and reduced soil 
moisture, leading to lower photosynthetic efficiency and 
impaired pod development (Kakani et al., 2015). The lower 
RMSE and per cent deviation (8.32) for the first date of 
sowing indicate better predictability than the second date 
of sowing (RMSE=127.34 g m-2; % dev.=14.31).

The finding of the model validation for the first date of 
sowing during 2016 is displayed in Table 4. Overestimation 
of the dry matter accumulation at T1, T2, T5 stage and 

Figure 2: Coefficient of determination between observed and 
Predicted yield for the year 2015 date of sowing II

y = 0.7374x + 68.508
R² = 0.4083
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Figure 2: Coefficient of determination between observed and  
                Predicted yield for the year 2015 date of sowing II 
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underestimation of the accumulation of the dry matter was 
observed at T3, T4 stages. Pod yield was also underestimated 
by the model. The underestimation and overestimation of 
the model was mainly due to the environmental variations. 
However, the model was within the acceptable range, 
indicated good agreement between the observed and 
anticipated yield with coefficient of determination of 89% 
(Figure 3). A lower RMSE and per cent deviation was also 
observed (56.54 g m-2, -5.56, respectively). Groundnut 
growth is highly influenced by soil temperature and 
photoperiod, which play crucial roles in regulating flowering 
and pod filling (Nautiyal, 2022).

Table 5 presented the results of the model validation for 

the second sowing date during 2016. During T1, T2, and 
T4 stage, dry matter accumulation was overestimated 
and at the T3 and T5 stage, dry matter accumulation was 
underestimated. The model overestimated the pod yield. 
The environmental fluctuations or climatic variability 
throughout 2016 was the primary cause of the model's 
deviation. Although the model was within the acceptable 
range, yield predicted and observed was well-aligned with 
a coefficient of determination of 71% (Figure 4). The per 
cent deviation and root mean square error showed lower 
values (71.81 g m-2 and -11.44, respectively) indicating a 
good fit. This result was in accordance with Giridhar (2019). 
These deviations were linked to variations in growing degree 

Table 3: Validation of the stoichiometric crop weather model for the year 2015 (Date of sowing-II)

Stages Initial TDM GDD SR AET Observed DM (g m-2) Predicted DM (g m-2)

T1 434.60 540.00 39.62 79.92 73.29

T2 79.92 133.70 157.20 81.80 182.04 159.16

T3 182.04 283.60 309.30 92.70 239.76 461.35

T4 239.76 121.70 152.70 57.00 275.28 259.40

T5 275.28 426.30 418.20 43.56 428.46 310.81

Pod yield
TDM1 TDM2 TDM 3 TDM 4 TDM 5 (P) Yg (O) Yg (P)

79.92 182.04 239.76 275.28 210.80 142.94 141.32

% dev. 14.31 RMSE 127.34

Figure 4: Coefficient of determination between observed and 
Predicted yield for the year 2016 date of sowing II

Figure 3: Coefficient of determination between observed and 
predicted yield for the year 2016 date of sowing I

Table 4: Validation of the stoichiometric crop weather model for the year 2016 (Date of sowing-I)

Stages Initial TDM GDD SR AET Observed DM (g m-2) Predicted DM (g m-2)

T1 400.00 518.40 39.89 39.96 71.21

T2 39.96 144.10 197.80 83.80 102.12 115.05

T3 102.12 269.90 279.90 70.01 308.58 261.60

T4 308.58 141.50 181.40 72.20 399.60 378.73

T5 399.60 372.60 585.10 51.20 446.22 566.39

Pod yield
TDM1 TDM2 TDM 3 TDM 4 TDM 5 (P) Yg (O) Yg (P)

39.96 102.12 308.58 399.60 566.40 189.16 158.28

% dev. -5.56 RMSE 56.54

y = 1.0841x - 9.8819
R² = 0.8999
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Fig. 3: Coefficient of determination between observed and  
           predicted yield for the year 2016 date of sowing I 

y = 0.9599x + 31.483
R² = 0.7184
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Figure 4: Coefficient of determination between observed and  
                Predicted yield for the year 2016 date of sowing II 
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days (GDD) and soil moisture conditions, as groundnut 
requires optimal GDD accumulation for effective biomass 
production and yield formation (Reddy et al., 2003). The 
lower predictability for the second date of sowing may be 
due to increased temperatures and moisture stress, which 
adversely affect root development, nodulation, and pod 
formation in groundnut (Prasad et al., 2003).

The results of the model validation for the year 2017 
at first date of sowing are presented in Table 6. The 
model underestimated the dry matter accumulation at 
pod initiation (T3), pod filling (T4), harvesting (T5) and 
overestimated the accumulation of dry matter at 30 DAS 

(T1), 50% flowering (T2) and Pod yield (Yg). However, 
the model was within the acceptable range, indicated good 
agreement between the observed and predicted yield. In 
this model, a good agreement has been realized between the 
predicted and observed yield of groundnut with coefficient 
of determination 98% as indicated in Figure 5. Lower 
root mean square error (RMSE) and per cent deviation 
was observed i.e., 34.59 g m-2 and -2.96%, respectively. 
The improved accuracy was likely due to stable weather 
conditions, minimal climatic variations, and consistent solar 
radiation influencing crop growth positively. Groundnut 
has a high requirement for solar radiation, especially during 

Table 5: Validation of the stoichiometric crop weather model for the year 2016 (Date of sowing-II)

Stages Initial TDM GDD SR AET Observed DM (g m-2) Predicted DM (g m-2)

T1 413.70 519.30 37.51 46.62 70.85

T2 46.62 139.32 492.24 84.72 77.70 138.36

T3 77.70 273.61 434.90 86.90 273.06 181.28

T4 273.06 137.80 420.00 78.95 313.02 447.33

T5 313.02 460.30 365.90 49.20 326.34 325.90

Pod yield
TDM1 TDM2 TDM 3 TDM 4 TDM 5(P) Yg (O) Yg (P)

46.62 77.70 273.06 313.02 325.90 140.00 154.70

% dev. -11.44 RMSE 71.81

Table 6: Validation of the stoichiometric crop weather model for the year 2017 (Date of sowing-I)

Stages Initial TDM GDD SR AET Observed DM (g m-2) Predicted DM (g m-2)

T1 410.40 520.30 34.50 68.82 71.21

T2 68.82 139.40 490.20 79.90 126.54 161.49

T3 126.54 269.90 434.20 81.80 259.74 237.96

T4 259.74 121.50 400.80 59.60 377.40 359.82

T5 377.40 323.70 342.10 45.60 517.26 451.72

Pod yield
TDM1 TDM2 TDM 3 TDM 4 TDM 5(P) Yg (O) Yg (P)

68.82 126.54 259.74 377.40 451.70 109.20 138.76

% dev. -2.96 RMSE 34.59
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Figure 5: Coefficient of determination between observed and 
Predicted yield for the year 2017 date of sowing I

the flowering and pod development stages, as inadequate 
light can reduce biomass accumulation and yield (Nigam 
et al., 2005).

The outcome of the model validation for the second date 
of sowing during 2017 is shown in Table 7. The dry matter 
accumulation at pod initiation (T3) and harvesting stage 
(T5) was underestimated by the model and overestimated 
at 30 DAS (T1), 50% flowering (T2), pod filling stages (T4). 
However, the model was within the permissible range and 
showed considerable agreement between the observed and 
predicted yields. Further, the model predictive ability was 
evaluated with R2 value, RMSE and per cent deviation. 
The model has good fit to the data with coefficient of 
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determination value of 69% (Figure 6), lower RMSE 
and per cent deviation of about 72.68 g m-2 and -6.20%, 
respectively. Although the accuracy was lower compared to 
the first sowing date, the model's moderate predictability 
for the second date of sowing could be attributed to slightly 
higher temperatures and reduced soil moisture availability 
(Kukal, 2024). Delayed sowing often exposes groundnut 
crops to increased water stress and suboptimal growing 
conditions, affecting biomass accumulation and pod filling 
(Prasad et al., 2003)

The findings of the model validation for the first date of 
sowing during 2018 are displayed in Table 8. Overestimation 
of the dry matter accumulation at T1, T4, T5 stages and 

underestimation at T2, T3 stages, respectively was observed. 
Pod yield was also overestimated by the model. The 
underestimation and overestimation of the model was 
mainly due to the environmental variations or climatic 
variability during 2018. Although, the model showed a good 
agreement between the observed and predicted values with 
coefficient of determination of 73% (Figure 7) and lower 
RMSE and per cent deviation (267.97 g m-2 and 2.20, 
respectively) (Rajegowda et al., 2014).
The outcome of the model validation for the second 
date of sowing during 2018 is shown in Table 9. The dry 
matter accumulation at 30 DAS (T1), 50% flowering (T2) 
and harvesting (T5) was overestimated by the model and 

Table 7: Validation of the stoichiometric crop weather model for the year 2017 (Date of sowing-II)

Stages Initial TDM GDD SR AET Observed DM (g m-2) Predicted DM (g m-2)

T1 413.70 519.30 37.51 46.62 70.85

T2 46.62 139.30 492.24 84.72 77.70 138.36

T3 77.70 273.60 434.90 86.90 273.06 181.28

T4 273.06 137.80 420.00 78.95 313.02 447.33

T5 313.02 460.30 365.90 49.20 326.34 325.90

Pod yield
TDM1 TDM2 TDM 3 TDM 4 TDM 5(P) Yg (O) Yg (P)

46.62 77.70 273.06 313.02 325.90 185.80 154.70

% dev. -6.20 RMSE 72.68

Figure 6: Coefficient of determination between observed and 
Predicted yield for the year 2017 date of sowing II

Table 8: Validation of the stoichiometric crop weather model for the year 2018 (Date of sowing-I)

Stages Initial TDM GDD SR AET Observed DM (g m-2) Predicted DM (g m-2)

T1 402.10 465.70 36.50 51.06 62.76

T2 51.06 123.85 467.20 91.28 162.06 146.90

T3 162.06 267.80 400.40 84.20 594.96 322.27

T4 594.96 143.40 409.10 72.70 639.36 680.68

T5 639.36 637.60 472.30 50.32 794.76 1389.58

Pod yield
TDM1 TDM2 TDM 3 TDM 4 TDM 5(P) Yg (O) Yg (P)

51.06 162.06 594.96 639.36 1389.60 149.30 173.99

% dev. 2.20 RMSE 267.97

y = 1.3766x - 85.984
R² = 0.735
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Figure 7: Coefficient of determination between observed and 
Predicted yield for the year 2018 date of sowing I

y = 0.9637x + 23.375
R² = 0.6918
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Figure 8: Coefficient of determination between observed and 
Predicted yield for the year 2018 date of sowing II

Table 9: Validation of the stoichiometric crop weather model for the year 2018 (Date of sowing-II)

Stages Initial TDM GDD SR AET Observed DM (g m-2) Predicted DM (g m-2)

T1 388.15 443.50 35.00 56.62 59.80

T2 56.62 140.60 572.80 87.14 138.72 155.14

T3 138.72 285.10 408.00 81.90 426.22 293.04

T4 426.22 121.80 449.10 73.07 566.10 559.77

T5 566.10 439.40 354.20 47.29 839.16 1065.54

Pod yield
TDM1 TDM2 TDM 3 TDM 4 TDM 5(P) Yg (O) Yg (P)

51.06 162.06 594.96 639.36 1389.60 149.30 173.99

% dev. -2.36 RMSE 108.53

underestimated at pod initiation (T3), pod filling stages 
(T4). The model has excellent fit to the data with coefficient 
of determination value of 92% (Figure 8), lower RMSE 
and per cent deviation of about 108.53 g m-2 and -2.36%, 
respectively. Groundnut is highly susceptible to erratic 
rainfall, as excessive moisture during flowering can lead to 
poor pollination, while drought stress reduces pod filling 

y = 1.1793x - 40.229
R² = 0.9271
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(Prasad et al., 2003). The better performance of the second 
date of sowing highlights the importance of selecting 
optimal sowing periods to enhance crop yield predictions. 
The improved predictability in the second sowing date could 
be due to more stable temperature conditions and better soil 
moisture retention, which provided a favorable environment 
for crop establishment and pod development (Ashok et al., 
2025). In certain climatic scenarios, delayed sowing can 
help groundnut avoid excessive heat stress during early 
growth stages and align reproductive phases with optimal 
weather conditions, improving biomass accumulation and 
yield stability (Singh et al., 2012). 

4.   CONCLUSION

The Stoichiometric crop weather model predicted 
groundnut dry matter and pod yield using weather-

based regression equations. R² ranged from 0.08 at 30 DAS 
to 0.77 at pod filling, with 0.38 for pod yield. Validated from 

2015–2018, the model performed best for early sowing, 
achieving up to 98% accuracy (2017). Accuracy declined 
with delayed sowing due to heat and moisture stress. Despite 
some estimation errors, the model showed strong potential 
for predicting yield under varying climatic conditions.
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